cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Chemistry
ISSN : 14119420     EISSN : 24601578     DOI : -
Indonesian Journal of Chemistry is an International, peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry including applied chemistry. The journal is accredited by The Ministry of Research, Technology and Higher Education (RISTEKDIKTI) No : 21/E/KPT/2018 (in First Rank) and indexed in Scopus since 2012. Since 2018 (Volume 18), Indonesian Journal of Chemistry publish four issues (numbers) annually (February, May, August and November).
Arjuna Subject : -
Articles 1,956 Documents
Qualitative Geochemical Analysis of the 2004 Indian Ocean Giant Tsunami Deposits Excavated at Seungko Mulat Located in Aceh Besar of Indonesia Using Laser-Induced Breakdown Spectroscopy Mitaphonna, Rara; Ramli, Muliadi; Ismail, Nazli; Arief, Nasrullah Idris
Indonesian Journal of Chemistry Vol 24, No 3 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.88086

Abstract

Laser-induced breakdown spectroscopy (LIBS) was employed to characterize the geochemical signatures layer by layer of 2004 Indian Ocean tsunami deposits in Seungko Mulat Village, Aceh Province, Indonesia. In the LIBS experimental setup, a Nd-YAG laser beam is directed towards the deposit samples, and the resulting atomic emission lines from the laser-induced plasma are captured using a spectrometer. Our analysis reveals terrestrial indicators (Fe), heavy metals (Cu, Cr, Co, Cd), and increased emission intensity of Mg, Ca, Al, K, Si, Ba, N, and O in the 2004 Indian Ocean tsunami layers. The emission intensity ratios of several elements in the 2004 Indian Ocean tsunami deposit layers, namely Ca/Ti, Si/Ti, and K/Ti, unveil notable disparities among the elements evaluated. This indicates the possibility of utilizing these ratios as reliable geochemical markers to differentiate the layer by layer of tsunami deposits. LIBS surpasses XRF in detecting nearly all elements simultaneously and identifying both light elements and specific heavy metals (Ba, Cu, Cr, Co, Cd, Pb, Ni, V, W), exceeding XRF's detection capabilities. This study emphasizes the effectiveness of LIBS as an advanced optical technique, offering speed and promise in analyzing layer-by-layer geochemical markers of the 2004 Indian Ocean tsunami deposits in Seungko Mulat Village.
Use of Direct Microwave Irradiation in the Synthesis of Vanadium Phosphorus Oxide Catalysts via Vanadyl Hydrogen Phosphate Sesquihydrate Precursor Kang, Jo Yee; Leong, Loong Kong; Yap, Yeow Hong; Yong, Thian Khok
Indonesian Journal of Chemistry Vol 24, No 4 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.88163

Abstract

Four vanadyl pyrophosphate (VPO) catalysts were prepared via the sesquihydrate precursor route using direct microwave irradiation and reflux synthesis methods. The synthesis of the sesquihydrate precursor was carried out in 2 stages. The synthesized catalysts were denoted as VPOs-DD, VPOs-RR, VPOs-RD, and VPOs-DR; where VPOs represented VPO catalysts produced through sesquihydrate precursor, and D and R represented direct microwave irradiation and reflux synthesis methods, respectively. The direct microwave irradiation synthesis method was found to reduce the synthesis duration significantly for both stages of the precursor synthesis, from 48 to 4 h. An exclusive secondary configuration, akin to a needle-shaped form in chrysanthemums, is specifically noted in VPOs-DD could increase the specific surface area by 35.4% compared to the bulkier structure of VPOs catalyst produced via the conventional reflux synthesis method (VPOs-RR). Direct microwave irradiation could induce the removal of more than 4 times the total amount of oxygen atoms from the lattice of V4+ and V5+ phases, as compared to the conventional reflux method counterpart. This ultimately produced VPOs catalysts with greater catalytic performances and TON. In summary, employing direct microwave irradiation could generate VPOs catalysts with increased efficiency, improved activity and selectivity as compared to the conventional reflux method.
SDS-Assisted Hydrothermal Growth and Photocatalytic Activity of Like-Caviar MoFe2O4 Nanoparticle Decorated with Al2O3 Hameed, Mohammed Ali; Ahmed, Luma Majeed
Indonesian Journal of Chemistry Vol 24, No 3 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.88444

Abstract

Like-caviar molybdenum ferrite nanoparticles (MoFe2O4 NPs) have been successfully synthesized via a hydrothermal route in the presence of the negative surfactant (sodium dodecyl sulfate (SDS)). SDS acts as a template, stabilizer, and stops the aggregating process through storage. The mean crystal size of MoFe2O4 NPs rises with decorating it with Al2O3. Based on SEM analysis, the shapes of MoFe2O4, Al2O3, and their composite demonstrated like-caviar, like-brain cells, and like-grains, respectively. Al2O3 has been chosen to incorporate with spinel MoFe2O4 to make it color more light, this crucial step is necessary to enhance their optical characteristics. FTIR spectra observed the MoFe2O4 NPs are inverse spinel. The photo-decolorization test employs indigo carmine (IC) as a model pollutant. The quantum yields (Φ) of IC dye decolorization with studied photocatalysts are low, which may be created by quencher materials, dimerization of dye molecules, and photophysical deactivation processes (ISC process). Moreover, the photocatalytic activity of using MoFe2O4 raised after being decorated with alumina, which revealed an increase in the surface acidity, hydroxyl group adsorption, size, band gap, pHpzc of MoFe2O4 from 2.9–3.6 to 4.2–5.9 after decorated alumina. This pH is suitable for decolorizing IC dye, which has a pH of solution equal to 5.3.
Synthesis, Characterization, and Control Release of Zinc Layered Nitrate Intercalated with Beta-Napthoxyacetic Acid (BNOA) Nanocomposite Abd Rahim, Hasnatul Fitriah; Jalil, Mohammad Nor; Sarijo, Siti Halimah; Buyong, Faeiza; Zaki, Hamizah Mohd
Indonesian Journal of Chemistry Vol 24, No 3 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.88459

Abstract

In this research, the synthesis of the host using zinc nitrate-hexahydrate as a precursor to form zinc layered nitrate (ZLN) and the guest anion which is beta-napthoxyacetic acid (BNOA) will be intercalated with the ZLN to produce nanocomposites called ZLN/beta-napthoxyacetic acid (ZLNB). The method used for the synthesis of the host was self-assembly and ion exchange. The nanocomposites were confirmed with the basal spacing increases from 9.8 to 28.2 Å by using powder X-ray diffraction (PXRD). Therefore, proved the bigger basal spacing compared to the layered double hydroxide of MgAl and ZnAl. The appearance of the FTIR shift band at 1603 cm−1 of C=C aromatic ring indicates that the anions have been successfully incorporated into the interlayers of ZLNB. Moreover, the loading percentage estimated by the carbon content from the ZLNB determined by CHNS analyzer was 41.8% (w/w). The morphology analysis confirmed the plate-like structure for ZLN into flaky-like with irregular, porous and unambiguous structure for ZLNB by field emission scanning electron microscopy (FESEM). The controlled release property showed that the release of BNOA in the various aqueous solutions is in the order of Na3PO4 > Na2SO4 > NaCl and fitted into pseudo-second-order kinetic models.
Optimization of Desulfurization of 4-Methyldibenzothiophene and 4,6-Dimethyldibenzothiophene Using Mg/Al Layered Double Hydroxide Equipped with ZnO/TiO2 Amri, Amri; Ahmad, Nur; Wibiyan, Sahrul; Wijaya, Alfan; Mardiyanto, Mardiyanto; Royani, Idha; Mohadi, Risfidian; Lesbani, Aldes
Indonesian Journal of Chemistry Vol 24, No 4 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.88790

Abstract

The growth of heavy industry leads to an increase in sulfur dioxide emissions, impacting health, economy, and the fulfilment of the ecological needs for society. Sulfur removal is carried out using the oxidative desulfurization (ODS) method. In this study, layered double hydroxide materials of Mg/Al, Mg/Al-TiO2, and Mg/Al-ZnO were successfully synthesized and analyzed using X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) techniques. Those materials are used as catalysts for the desulfurization of 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT). Composite Mg/Al catalysts with metal oxides provide superior desulfurization process efficiency and enhanced stability, making them highly effective for repeated use. The conversion percentage of desulfurization of 4-MDBT and 4,6-DMDBT increases with time. The n-hexane is a suitable solvent for desulfurization of 4-MDBT and 4,6-DMDBT. All catalysts exhibit significant heterogeneity that greatly aids in the separation process.
Antibacterial Activity and CO2 Capture by Cerium-Copper Mixed Oxides Prepared Using a Co-precipitation Method Kamonwannasit, Sirilak; Futalan, Cybelle Morales; Khemthong, Pongtanawat; Youngjan, Saran; Phatai, Piaw
Indonesian Journal of Chemistry Vol 24, No 3 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.88872

Abstract

Indoor air pollution is comprised of fine particles, bacteria, fungi, and hydrocarbons. Acceptable indoor air quality is maintained using several layers of air filters. Alternative materials with the capacity to remove CO2 from indoor air with antibacterial efficacy need to be further investigated. Mixed oxides of Ce1.0-xCuxO (x = 0.0, 0.1, 0.5, 0.9, 1.0) were synthesized using a co-precipitation method. Characterization studies revealed that single oxides of Ce1.0O and Cu1.0O were of cubic fluorite and monoclinic crystal structures, respectively. Results also show that Ce0.1Cu0.9O and Ce0.5Cu0.5O were composites. All samples were classified as mesoporous materials with a type IV isotherm, and the main functional group was identified as Ce–O–Cu. The surface area of Ce0.5Cu0.5O was 17.63 m2/g. The highest CO2 adsorption capacity was 5.72 cm3/g for Ce0.5Cu0.5O. Moreover, the greatest antibacterial activity against B. subtilis (12.22 mm inhibition zone) and P. aeruginosa (7.34 mm inhibition zone) was observed for Ce0.5Cu0.5O at a 30 mg/L concentration. The synthesis of mixed Ce1.0-xCuxO oxides along with their satisfactory antibacterial performance and CO2 adsorption capacity, indicate its potential use as an alternative material for inclusion in indoor air filters.
New Series of Ni(II), Cu(II), Zr(IV), Ag(I), and Cd(II) Complexes of Trimethoprim and Diamine Ligands: Synthesis, Characterization, and Biological Studies Al-Assafe, Amaal Younis; Al-Quaba, Rana Abdul Malik Sulaiman
Indonesian Journal of Chemistry Vol 24, No 3 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.89167

Abstract

New compounds series of [M(TMP)(en)]X·nH2O and [M(TMP)(PD)]X·nH2O, where M = Ni2+, Cu2+, Zr4+, Ag+, Cd2+, TMP = trimethoprim, en = ethylenediamine, PD = o-phenylene and X= Cl− or NO3−, were prepared. The compounds were characterized using techniques including melting points, conductance, elemental analysis, FTIR, NMR, and mass spectroscopy. FTIR spectra indicated TMP acted like a bi-dentate ligand, combining via the nitrogen atoms of azomethine and pyrimidine amino groups. Diamine ligands (en or o-PD) are coordinated via two nitrogen atoms. Prepared compounds showed monomeric behavior and adopted a 6-coordinate octahedral geometry based on magnetic susceptibility and UV spectra. Conductivity measurements revealed Zr(IV) compounds were 1:2 conductive, while Ag+ and Cd2+ were 1:1 conductive; Ni2+ and Cu2+ compounds were non-conductive. Antibacterial tests on compounds and ligands against Bacillus subtilis and Staphylococcus aureus demonstrated broad-spectrum antibacterial activity. The mixed metal compounds revealed an observable tendency of antibacterial activity in the order Zr > Cd = Ag > Cu, making Zr(IV) compounds the most biologically active among them against S. aureus (Gram-positive) while the same compounds showed less antibacterial activity against B. subtilis (Gram-negative) than the free ligand.
Surface Properties of Graphene and Graphene Oxide Aerogels for Energy Storage Applications Mahmood, Rasha Shakir; Hussain, Dhia Hadi
Indonesian Journal of Chemistry Vol 24, No 3 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.89639

Abstract

This review is mainly on the relevance of graphene aerogels for energy storage systems highlighting their distinct properties and applications. Today, electronic devices such as smartphones, laptops, and other electrical appliances have become the axe of our daily lives. As a result, electrical energy is required for these devices. Despite the discovery of renewable energy sources as an alternative to fossil fuels, the construction of energy storage systems is still necessary to store energy. Lithium-ion batteries and supercapacitors are considered essential systems for this purpose and have witnessed tremendous development in recent years. The efficiency of these systems depends on the structure of the materials used in their formation. Graphene oxide and graphene aerogel materials improve the properties of energy storage systems in terms of stability of charging and discharging cycles, longevity, and reduction of combustion incidents resulting from ordinary compounds. However, the development of graphene aerogels faces challenges in improving their mechanical properties, the cost of their preparation, and their high agglomeration ability in solvents. Therefore, intensive efforts are needed to develop these materials for a new revolution in energy storage.
Cloud Point Extraction Method for Spectrophotometric Determination of 3-Aminophenol in Environmental Samples Imran, Alaa Mousa; Dhahir, Saadiyah Ahmed; Muklive, Ahmed Jassim
Indonesian Journal of Chemistry Vol 24, No 4 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.89922

Abstract

This work describes the development of new spectrophotometric techniques for 3-aminophenol assessment. The first technique involves using benzidine in an alkaline solution to convert 3-aminophenol into a colored complex. The produced complex has a red color with an absorbance of 462 nm. Between the concentration range 5–14 μg mL−1, Beer's law is obeyed with a correlation coefficient (R2) of 0.99781, a limit of detection (LOD) of 0.0423 μg mL−1, and a limit of quantification (LOQ) of 0.1411 μg mL−1. The recovery was between 87.2–95.43%, the relative standard deviation (%RSD) was 2.40–3.31% and the molar absorptivity was 3.545 × 103 L mol−1 cm−1. Secondly, cloud point extraction (CPE) was used to determine a trace amount of the colored product in the first method, followed by measuring with a UV-vis spectrophotometer. The linearity of the calibration curve was above the range of 5–14 μg mL−1, and the R2 was 0.9988. The LOD and LOQ were found to be 0.0318 and 0.1059 μg mL−1, respectively. The recovery was between 99.49–99.82%, the %RSD was 0.67–2.00% and the molar absorptivity was 4.724 × 103 L mol−1 cm−1. This method was successfully employed for 3-aminophenol detection in several wastewater samples from Rustamiya, under the Al Doura and Diyala bridge.
Exploring the Anticancer Activity of Gold Complex with Newly Ligand (DDIBM): Synthesis, Spectral Identification and Magnetic Susceptibility of Its Metallic Complexes Noor, Siham Sami; Kareem, Ibtihal Kadhim
Indonesian Journal of Chemistry Vol 24, No 3 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.89954

Abstract

The new heterocyclic ligand, 5-(dimethylamino)-2-(((2-((E)-(4,5-diphenyl-1H-imidazol-2-yl)diazenyl)benzyl)imino)methyl)phenol (DDIBM), was synthesized via the condensation of p-aminobenzylamine with 4,5-diphenyl imidazole, and the resultant compound was condensed with 4-(dimethylamino)-2-hydroxybenzaldehyde. Various instrumental techniques such as mass, 1H-NMR, IR, C.H.N elemental analysis, and UV-vis spectroscopy were used to analyze a newly synthesized ligand. A novel series of complexes was prepared by complexing the ligand with Ni(II), Cu(II), Co(II), and Au(III) and characterized using some of the mentioned techniques. Flame atomic absorption spectroscopy was used to measure the metal ion percentages in the complexes. The magnetic susceptibility and molar conductivity were studied. The electronic spectral data and the magnetic measurement predict the octahedral structure of the complexes except Au(III) complex which has square planer geometry. All complexes showed electrolyte properties. This study aimed to conduct an in vitro cytotoxicity comparative study of DDIBM and its Au(III) complex on human breast cancer cells (MCF-7) and other normal cells. The Au(III) complex was found to be highly selective in targeting cancer cells without affecting normal healthy cells, compared to the ligand. Thus, this complex can be considered as a new drug for treating breast cancer cells (MCF-7), and an attempt in the future to study its effect on other types of cancer.

Filter by Year

2001 2025


Filter By Issues
All Issue Vol 25, No 5 (2025) Vol 25, No 4 (2025) Vol 25, No 3 (2025) Vol 25, No 2 (2025) Vol 25, No 1 (2025) Vol 24, No 6 (2024) Vol 24, No 5 (2024) Vol 24, No 4 (2024) Vol 24, No 3 (2024) Vol 24, No 2 (2024) Vol 24, No 1 (2024) Vol 23, No 6 (2023) Vol 23, No 5 (2023) Vol 23, No 4 (2023) Vol 23, No 3 (2023) Vol 23, No 2 (2023) Vol 23, No 1 (2023) Vol 22, No 6 (2022) Vol 22, No 5 (2022) Vol 22, No 4 (2022) Vol 22, No 3 (2022) Vol 22, No 1 (2022) Vol 22, No 2 (2022) Vol 21, No 6 (2021) Vol 21, No 5 (2021) Vol 21, No 4 (2021) Vol 21, No 3 (2021) Vol 21, No 2 (2021) Vol 21, No 1 (2021) Vol 20, No 6 (2020) Vol 20, No 5 (2020) Vol 20, No 4 (2020) Vol 20, No 3 (2020) Vol 20, No 2 (2020) Vol 20, No 1 (2020) Vol 19, No 4 (2019) Vol 19, No 3 (2019) Vol 19, No 2 (2019) Vol 19, No 1 (2019) Vol 18, No 4 (2018) Vol 18, No 3 (2018) Vol 18, No 2 (2018) Vol 18, No 1 (2018) Vol 17, No 3 (2017) Vol 17, No 2 (2017) Vol 17, No 1 (2017) Vol 16, No 3 (2016) Vol 16, No 2 (2016) Vol 16, No 1 (2016) Vol 15, No 3 (2015) Vol 15, No 2 (2015) Vol 15, No 1 (2015) Vol 14, No 3 (2014) Vol 14, No 2 (2014) Vol 14, No 1 (2014) Vol 13, No 3 (2013) Vol 13, No 2 (2013) Vol 13, No 1 (2013) Vol 12, No 3 (2012) Vol 12, No 2 (2012) Vol 12, No 1 (2012) Vol 11, No 3 (2011) Vol 11, No 2 (2011) Vol 11, No 1 (2011) Vol 10, No 3 (2010) Vol 10, No 2 (2010) Vol 10, No 1 (2010) Vol 9, No 3 (2009) Vol 9, No 2 (2009) Vol 9, No 1 (2009) Vol 8, No 3 (2008) Vol 8, No 2 (2008) Vol 8, No 1 (2008) Vol 7, No 3 (2007) Vol 7, No 2 (2007) Vol 7, No 1 (2007) Vol 6, No 3 (2006) Vol 6, No 2 (2006) Vol 6, No 1 (2006) Vol 5, No 3 (2005) Vol 5, No 2 (2005) Vol 5, No 1 (2005) Vol 4, No 3 (2004) Vol 4, No 2 (2004) Vol 4, No 1 (2004) Vol 3, No 3 (2003) Vol 3, No 2 (2003) Vol 3, No 1 (2003) Vol 2, No 3 (2002) Vol 2, No 2 (2002) Vol 2, No 1 (2002) Vol 1, No 3 (2001) Vol 1, No 2 (2001) Vol 1, No 1 (2001) ARTICLE IN PRESS Article in press More Issue