cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
editorial-cst@kipmi.or.id
Editorial Address
-
Location
,
INDONESIA
Communications in Science and Technology
ISSN : 25029258     EISSN : 25029266     DOI : -
Core Subject : Engineering,
Communication in Science and Technology [p-ISSN 2502-9258 | e-ISSN 2502-9266] is an international open access journal devoted to various disciplines including social science, natural science, medicine, technology and engineering. CST publishes research articles, reviews and letters in all areas of aforementioned disciplines. The journal aims to provide comprehensive source of information on recent developments in the field. The emphasis will be on publishing quality articles rapidly and making them freely available to researchers worldwide. All articles will be indexed by Google Scholar, DOAJ, PubMed, Google Metric, Ebsco and also to be indexed by Scopus and Thomson Reuters in the near future therefore providing the maximum exposure to the articles. The journal will be important reading for scientists and researchers who wish to keep up with the latest developments in the field.
Arjuna Subject : -
Articles 15 Documents
Search results for , issue "Vol 8 No 1 (2023)" : 15 Documents clear
Photocatalytic degradation of methylene blue and Congo red dyes from aqueous solutions by bentonite-Fe3O4 magnetic Riyanti, Fahma; Hasanudin, Hasanudin; Rachmat, Addy; Purwaningrum, Widia; Hariani, Poedji Loekitowati
Communications in Science and Technology Vol 8 No 1 (2023)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.8.1.2023.1007

Abstract

This study describes the co-precipitation synthesis of magnetic bentonite-Fe3O4 for photocatalytic degradation of methylene blue and Congo red pigments under visible light. Bentonite-Fe3O4 composites were produced using the mass ratio of 2:1 and 1:1 for bentonite to Fe3O4, respectively. X-ray Powder Diffraction (XRD), Fourier Transform Infra-Red (FTIR), BET surface area, Vibrating-Sample Magnetometer (VSM), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV DRS) were used to characterize the materials. The bentonite-Fe3O4 (1:1) composite exhibited a greater surface area in comparison to the bentonite-Fe3O4 (2:1) composite with a measured value of 106.6 m2/g. It is a superparamagnetic material with a band gap of 2.25 eV and a saturation magnetization of 69.64 emu/g. The photocatalytic degradation of dye using bentonite-Fe3O4 (1:1) with the initial dye concentration of 25 mg/L, volume of 50 mL, catalyst dose of 0.05 g/L, addition of 3 mL H2O2, and 90 minutes of visible irradiation resulted in 94.34% and 98.45% degradation efficiency of methylene blue and Congo red dyes, respectively. The study determined that the most favorable pH for the photocatalytic degradation of methylene blue was pH 11, whereas the optimal pH for Congo red was found at pH 5. For methylene blue and Congo red dyes, photocatalytic degradation followed pseudo-first-order with the constant rates of 0.0356 min-1 and 0.0348 min-1, respectively. After five cycles of use in the photocatalytic process, the catalyst's degradation efficiency fell into below 5%. This research demonstrated that catalysts could be utilized in wastewater treatment technology.
Palm oil mill effluent (POME) precipitation using ammonium-intercalated clay coagulant Priatna, Satria Jaya; Hakim, Yusuf Mathiinul; Alfarizi, Muhammad Afif; Sailah, Siti; Mohadi, Risfidian
Communications in Science and Technology Vol 8 No 1 (2023)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.8.1.2023.1034

Abstract

Clay intercalation has been completed to improve coagulation ability using ammonium ions intercalant via multi-step intercalation. The intercalated clay was confirmed by Scanning Electron Microscope-Energy Dispersive Spectroscopy analysis of expanded lamellar and reduction impurities. Fourier Transform Infra-Red analysis confirmed the sharp and strong peak adsorption at 1448 cm-1 as ammonium (NH4+) bendingvibration, and X-Ray Diffraction analysis confirmed the peak shifting to smaller 2? at 10.08° as increasing basal spacing because of ammonium ion intercalated. The Palm Oil Mill Effluent (POME) coagulation was carried out using contact time and coagulant dose variations to determine the optimum conditions, reaching 45 minutes of coagulation and 0.4 g coagulant was used. Furthermore, the turbidity, free fatty acid, and total suspended solids were measured to reach the reduction values of 93%, 49.7%, and 73.7%, respectively. The reusable study of ammoniumintercalated clay confirmed the stability of the three cycles of coagulation used.
A novel approach in the synthesis of CdS/titania nanotubes array nanocomposites to obtain better photocatalyst performance Pratiwi, Reno; Ibadurrohman, Muhammad; Listiani Dewi, Eniya; -, Slamet
Communications in Science and Technology Vol 8 No 1 (2023)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.8.1.2023.1049

Abstract

Studies that seek to improve the performance of photocatalyst continue to develop. Several observations have been made on the effect of using ultrasonic waves during the synthesis process of CdS/Titania Nanotubes Array (CdS/TiNTA) nanocomposites on an ability to degrade ciprofloxacin solution (CIP) and produce hydrogen. Therefore, the nanocomposite synthesis process uses the Successive Ionic Layer Adsorption and Reaction (SILAR) method, with (CH3COO)2Cd and Na2S as the precursors. During the SILAR process, sonication was applied for 60 minutes and carried out in the amorphous phase of TiO2 to increase the effectiveness of contact between the two semiconductors. The synthesis results were confirmed in term of their crystallinity, morphology, the presence of components on the surface, and the shift of bandgap by means of XRD, FESEM, FTIR, and UV-Vis DRS characterization, respectively. Photocatalytic activities of the nanocomposites were evaluated in a system containing 10 ppm CIP solution, on the purpose of observing their ability to degrade CIP and produce hydrogen. Our findings revealed an improvement in crystallinity, successful semiconductor coupling, and a band gap narrowing in the synthesized nanocomposites. Furthermore, the photocatalysts synthesized in the amorphous TiO2 and by sonication during SILAR offered doubled production capacity of hydrogen (0.191 mmol/m2) as compared to photocatalysts synthesized without sonication (0.092 mmol/m2). Compared to similar photocatalysts synthesized using the SILAR method in the crystalline phase, photocatalysts synthesized in the amorphous phase exhibited four-fold higher hydrogen production (0.044 to 0.191 mmol/m2). This prominent ability of the nanocomposites is related to the success of CdS adhering well to TiO2 surface to form nanocomposites, so that the bandgap energy position of CdS that is strong in the reduction reaction greatly contributes to improve the performance of the resulting photocatalyst, which is very advantageous in terms of its ability in water-splitting reactions.
Light absorption enhancement in organic solar cell using non-concentric Ag:SiO2 core-shell nanoparticles Muldarisnur, Mulda; Fahendri, F.; Perdana, Ilham; Abdullah, Zulfi; Yusfi, Meqorry
Communications in Science and Technology Vol 8 No 1 (2023)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.8.1.2023.1076

Abstract

Low solar energy conversion efficiency prevents the widespread of organic solar cells; hence, metal nanoparticles have been used to overcome this problem without increasing cell thickness. We investigated light absorption enhancement in view of the embedment of Ag:SiO2 core-shell nanoparticles of different shell thicknesses, core offsets, offset orientation angles, and vertical mismatches between neighboring particles. The simulations were carried out using the finite element method. This is the first investigation in the use of asymmetric nanoparticles. At optimized conditions, absorption enhancement up to 345% compared to the one without the nanoparticles could be achieved. The enhancement was found much higher than that of the published values. The enhancement results were mainly from the increase of near-field localization and scattering in the active layer of solar cells due to the excitation of Fano resonances. The resonance occurred due to the non-symmetric nature of the core-shell nanoparticles.
Response of peanut quality and yield to chicken manure combined with Rhizobium inoculation in sandy soil Chuong, Nguyen Van
Communications in Science and Technology Vol 8 No 1 (2023)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.8.1.2023.1082

Abstract

Chemical fertilizers, which contain a nitrogen (N) element, has been intensively used to increase the peanut productivity. However, the unstable and high cost of N fertilizer, and the great demand for N fertilizer sources have strongly increased the strategical plan of nitrogen fixation (NF). Therefore, the field research was carried out to appraise the ability of Rhizobium sp. trains and chicken manure (CM) on the quality and yield of peanuts. This research has four ratios, which valued from 0.0, 2.0, 4.0 to 6.0 t CM per ha in the combination with the Rhizobium sp. inoculum, expect control treatment (without CM and Rhizobium sp.). Different rates of CM combined with Rhizobium sp. inoculation was added by using 6.0 tons CM/ ha, which had number of the highest peanut nodules. Research results observed that the inoculant of Rhizobium sp. strain combined with CM remarkably increased the yield components per plant such as biomass, number of nodules, weight of dry nodules, weight of fill and empty pods and fresh yield of groundnut. The highest yield and quality of peanut (7.60 t/ha), oil % (50.6%), seed protein percentage (26.8%), as well as NPK content in seed (4.32, 0.912 and 0.999%, respectively) were obtained under the application of NPK+6.0 t CM/ha+ Rhizobium sp. inoculation. Co-application of 6t CM/ha and Rhizobium sp. inoculation increased by 20.5% when compared without CM application and no Rhizobium sp. inoculation. The study showed that both possibility of nitrogen fixation of peanut and nitrogen uptake of the sandy soil were raised by field inoculant with effectiveness of Rhizobium sp. with animal manure application. In really, Rhizobium sp. inoculation and CM proved a great method to increase soil nutrients for subsequent crops and it helped to enhance the taking of nitrogen from the air into the crop soil.
Number of natural killer cells and cytokine levels in peripheral blood at various degrees of severity Devita, Ninda; Arjana, Adika Zhulhi; Intansari, Umi Solekhah; Susilowati, Rina
Communications in Science and Technology Vol 8 No 1 (2023)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.8.1.2023.1106

Abstract

This study aims to investigate NK cell number and cytokines level in various degrees of severity in COVID-19 cases. A total of 63 COVID-19 patient aged >18 y were divided into mild-moderate and severe-critical groups. Patient characteristics and peripheral blood count were obtained from medical records. NK cells number, levels of IFN-?, IL-10, and IL-12 in peripheral blood were examined by means of flow cytometry. The severe-critical group had leukocytosis, neutrophilia, lymphopenia, higher Neutrophil Lymphocyte Ratio, lower NK cell number and higher level of IL-10. In severe-critical group, those aged >60 years had higher IL-10. In both groups, patients with diabetes comorbidities had a higher number of NK cells (p<0.05). NK cell number and IL-10 in peripheral blood have potential as a predictor of severe COVID-19 patients.
Evaluation of stirring rate and pH on phenolic compounds recovery from palm kernel shell heavy phase bio-oil Wijayanti, Hesti; Mardina, Primata; Tuhuloula, Abubakar; Tri Ananda, Lidya; Aulia Rauf, Zahwa Syafa; Lutfi, Auliyani; Fadil Riyadi, Syahril
Communications in Science and Technology Vol 8 No 1 (2023)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.8.1.2023.1119

Abstract

This study aims to develop an efficient separation method for phenolic compounds derived from the heavy phase of bio-oil produced by the pyrolysis of palm kernel shell. Two variables were investigated during phenolic compound extraction using dichloromethane, i.e., stirring rate and pH of the solution. In both variables, the composition, yield, and distribution coefficient of the extracted phase were investigated. The results showed that the phenolic compounds' extraction favors high stirring rate and it obtained more results at more acidic conditions (lower pH). The best conditions for phenolic compounds were at 300 rpm of stirring rate and pH 4, which resulted in 77.88 % of yield and a 1.13 distribution of coefficient for the total phenols. The findings of this research will contribute to the better separation of phenolic compounds in bio-oil for improving its fuel characteristics as well as producing value-added chemicals.
Synthesis of mesogen-nanoparticle composites by doping 4-decyloxybenzoic acid with substrate-functionalized ZnO nanoparticle Paul, Saurav; Chakraborty, Bimal Bhushan; Deb, Kuheli; Choudhury, Sudip
Communications in Science and Technology Vol 8 No 1 (2023)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.8.1.2023.1125

Abstract

Nanomaterials and Mesogenic materials are two important pillars of today’s science and technology, in the fields of both material and biological applications. Mesogens or liquid crystals (LC) are self-aggregated anisotropic fluids with long range order, and the nature of self-aggregation largely controls their physical and material properties. Doping of nanomaterials over liquid crystalline matrix can provide valuable tools for development of materials with new or improved properties. In the present work 4-decyloxybenzoic acid is taken as the mesogenic matrix. It is observed that, composite prepared by doping of 4-decyloxybenzoic acid mesogen matrix by ZnO nanoparticle pre-functionalized with the same mesogen, caused a marked alteration in the mesogenic behavior. With 3% doping of matrix pre-functionalized ZnO NP on 4- decyloxy benzoic acid, we could achieve a shift of about 31ºC in the N-Iso transition temperature and, a decrease of >10ºC for the onset of liquid crystallinity by this method without quenching any of the mesophases exhibited by the pure mesogen. The synthesized materials have been characterized by variable temperature Polarised optical microscopy (POM), DSC, FTIR, XRD, EDX, and TEM This process may be considered for preparation other nanoparticle-mesogen composites as well. It was observed that, the effect of doping on the transition temperature and enthalpy of 4-Decyloxybenzoic Acid can be significantly enhanced by pre-functionalizing the dopant (ZnO NP) with the substrate molecules and then mixing this substrate functionalized ZnO nanoparticle with the bulk substrate.
Effect of microwave and ultrasonic irradiation on the enzymatic hydrolysis of water hyacinth biomass in the presence of surfactants Rokhati, Nur; Ratnawati; Prasetyaningrum, Aji; Anggraini, Widyah; Nugroho, Akbar; Novita, Nasyriyatul Hana; Andarani, Pertiwi; Riyanto, Teguh
Communications in Science and Technology Vol 8 No 1 (2023)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.8.1.2023.1143

Abstract

This paper presents the effect of microwave and ultrasound irradiation on the enzymatic hydrolysis of water hyacinth biomass in the presence of surfactants. Prior to hydrolyzing, the water hyacinth was treated utilizing alkali with and without microwave assistance. It was revealed that the microwave improved the removal of lignin and hemicellulose. The treated water hyacinth biomass was also characterized using Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), and Fourier-Transform Infrared (FT-IR) Spectroscopy. The effect of surfactant and the assistance of microwave and ultrasound were comprehensively studied. Some parameters varied, including stirring speed, surfactant type, concentration, and reaction time. The results indicated that microwave and ultrasound could enhance the reaction rate. Tween 80 here could improve conventional, microwave-assisted, and ultrasound-assisted hydrolysis of water hyacinth biomass. It was found that the ultrasound-assisted hydrolysis was better than that of others. The results of this research can be used as the groundwork for further developing the lignocellulosic biomass hydrolysis process, especially in an advanced enzymatic hydrolysis process.
Fabrication of glutathione-modified gold nanoparticles as 3-chloropropane-1,2-diol sensor Faramitha, Yora; Barori, Fadhlurrahman Rafi; Dimawarnita, Firda; Siswanto; Aqoma, Havid; Nugraha, Adam F; Ferdiansyah, Alfian
Communications in Science and Technology Vol 8 No 1 (2023)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.8.1.2023.1167

Abstract

Refined palm oil products may contain a harmful substance called as 3-monochloropropane-1,2-diol (3-MCPD), which can potentially be carcinogenic if consumed in excess. The determination of 3-MCPD depends on the sophisticated machine and highly skilled technicians but it is time-consuming. A simple method that proposes rapid detection remains a challenge. Hence, this research aims to develop a colorimetric-based rapid detection sensor using gold nanoparticles functionalized with a ligand, glutathione (GSH) to be bound to 3-MCPD. Varied concentrations of GSH were evaluated to obtain stable GSH-AuNPs. The characterization results showed that the composition of the stable GSH-AuNPs has been achieved by 250 µL of 0.02 M GSH addition. A stable GSH-AuNPs was ruby red with surface plasmon resonance (SPR) band at 520 nm and an average nanoparticle size of 30 nm. The indication for detection of 3-MCPD was marked by the decrease in the absorbance intensity. Thus, GSH-AuNPs have potential to be developed for the 3-MCPD sensor application.

Page 1 of 2 | Total Record : 15