cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
Jl. Imam Bardjo, No 4 Semarang 50241 INDONESIA
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
Published by Universitas Diponegoro
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.14710/ijred
Core Subject : Science,
The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass, Wind energy technology, Material science and technology, Low energy Architecture, Geothermal energy, Wave and Tidal energy, Hydro power, Hydrogen Production Technology, Energy Policy, Socio-economic on energy, Energy efficiency and management The journal was first introduced in February 2012 and regularly published online three times a year (February, July, October).
Articles 573 Documents
Biogas Filter Based on Local Natural Zeolite Materials Krido Wahono, Satriyo; Anggo Rizal, Wahyu
International Journal of Renewable Energy Development Vol 3, No 1 (2014): February 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.1.1-5

Abstract

UPT BPPTK LIPI has created a biogas filter tool to improve the purity of methane in the biogas. The device shaped cylindrical tube containing absorbent materials which based on local natural zeolite of Indonesia. The absorbent has been activated and modified with other materials. This absorbtion material has multi-adsorption capacity for almost impurities gas of biogas. The biogas  filter increase methane content of biogas for 5-20%. The biogas filter improve the biogas’s performance such as increasing methane contents, increasing heating value, reduction of odors, reduction of corrosion potential, increasing the efficiency and stability of the generator.
Household-Level Effects of Energy Insecurity on Welfare in Southern Africa: A Malawian Case Study Mkomba, Fydess Khundi; Saha, Akshay Kumar; Wali, Umaru Garba
International Journal of Renewable Energy Development Vol 10, No 1 (2021): February 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.33234

Abstract

The debate of energy security has, over the past decades, centered on supply factors within the energy policy framework in the public policy discourse. Much more empirical evidence is required to fully understand  the household-level effects of energy security on development outcomes. This paper explores the  characteristics of the households that face energy insecurity and also analyze the effects of energy insecurity on household welfare using the recent data from the Malawi Fourth Integrated Household Survey(IHS4) 2016-2017. Overall, 42.58% of Malawian households were found to be  energy insecure and the study findings show that the energy insecure were a heterogenous group compared to the energy secure. The heterogeneity exist because  of differences in demographics (likely to be advanced in age, likely to be females,  less likely to have a household head  with  formal education); socioeconomic status (likely to be poor,  had low wealth  levels); geography (likely to be rural dwellers in the central and southern parts of Malawi); housing and dwelling status (less likely to be renters, less likely to be found in permanent or semi-permanent buildings that have iron sheets and cement floor). Additional results from econometric analysis showed that energy insecure households reduced their food consumption by 2.3% for each 1% unit increase in the share of the energy costs in their total household budget. Similarly, on the education outcome, the energy insecure households reduced  their education expenditure by 3.6% for each 1% unit increase in the share of the energy costs over the total household expenditure. These findings show that energy security plays a key role towards improvement of household welfare in general as this might have short term and long-term negative implications on human capital development.
Automatic and Online Detection of Rotor Fault State Ouanas, Ali; Medoued, Ammar; Haddad, Salim; Mordjaoui, Mourad; Sayad, D.
International Journal of Renewable Energy Development Vol 7, No 1 (2018): February 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.1.43-52

Abstract

In this work, we propose a new and simple method to insure an online and automatic detection of faults that affect induction motor rotors. Induction motors now occupy an important place in the industrial environment and cover an extremely wide range of applications. They require a system installation that monitors the motor state to suit the operating conditions for a given application. The proposed method is based on the consideration of the spectrum of the single-phase stator current envelope as input of the detection algorithm. The characteristics related to the broken bar fault in the frequency domain extracted from the Hilbert Transform is used to estimate the fault severity for different load levels through classification tools. The frequency analysis of the envelope gives the frequency component and the associated amplitude which define the existence of the fault. The clustering of the indicator is chosen in a two-dimensional space by the fuzzy c mean clustering to find the center of each class. The distance criterion, the K-Nearest Neighbor (KNN) algorithm and the neural networks are used to determine the fault type. This method is validated on a 5.5-kW induction motor test bench.Article History: Received July 16th 2017; Received: October 5th 2017; Accepted: Januari 6th 2018; Available onlineHow to Cite This Article: Ouanas, A., Medoued, A., Haddad, S., Mordjaoui, M., and Sayad, D. (2017) Automatic and online Detection of Rotor Fault State. International Journal of Renewable Energy Development, 7(1), 43-52.http://dx.doi.org/10.14710/ijred.7.1.43-52
Influence of the Determination Methods of K and C Parameters on the Ability of Weibull Distribution to Suitably Estimate Wind Potential and Electric Energy M. Mouangue, Ruben; Y. Kazet, Myrin; Kuitche, Alexis; Ndjaka, Jean-Marie
International Journal of Renewable Energy Development Vol 3, No 2 (2014): July 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.2.145-154

Abstract

The modeling of the wind speed distribution is of great importance for the assessment of wind energy potential and the performance of wind energy conversion system. In this paper, the choice of two determination methods of Weibull parameters shows theirs influences on the Weibull distribution performances. Because of important calm winds on the site of Ngaoundere airport, we characterize the wind potential using the approach of Weibull distribution with parameters which are determined by the modified maximum likelihood method. This approach is compared to the Weibull distribution with parameters which are determined by the maximum likelihood method and the hybrid distribution which is recommended for wind potential assessment of sites having nonzero probability of calm. Using data provided by the ASECNA Weather Service (Agency for the Safety of Air Navigation in Africa and Madagascar), we evaluate the goodness of fit of the various fitted distributions to the wind speed data using the Q – Q plots, the Pearson’s coefficient of correlation, the mean wind speed, the mean square error, the energy density and its relative error. It appears from the results that the accuracy of the Weibull distribution with parameters which are determined by the modified maximum likelihood method is higher than others. Then, this approach is used to estimate the monthly and annual energy productions of the site of the Ngaoundere airport. The most energy contribution is made in March with 255.7 MWh. It also appears from the results that a wind turbine generator installed on this particular site could not work for at least a half of the time because of higher frequency of calm. For this kind of sites, the modified maximum likelihood method proposed by Seguro and Lambert in 2000 is one of the best methods which can be used to determinate the Weibull parameters.
Feasibility of marine renewable energies in African coastal countries Lam, Wei Haur; Oppong, Stephen
International Journal of Renewable Energy Development Accepted Articles
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.0.34075

Abstract

Africa has 38 coastal countries with a population of 895,609,564 persons with potential to harness energy from ocean. These coastal countries are: Madagascar, South Africa, Mozambique, Angola, Namibia, Mauritius, Republic of Congo and Democratic Republic of Congo in Southern Africa with 25.31% population; Somalia, Eritrea, Tanzania, Sudan, Kenya, Seychelles, Comoros and Djibouti in Eastern Africa with 17.58% population; Egypt, Morocco, Libya, Tunisia and Algeria in Northern Africa with 20.96% population; Cape Verde, Gabon, Nigeria, Mauritania, Liberia, Ghana, Senegal, Cote d’Ivoire, Cameroon, Sierra Leone, Guinea Bissau, Guinea, Equatorial Guinea, Sao Tome and Principe, Benin, Gambia and Togo with population of 35.15%. Offshore wind, offshore solar, Tidal power, Wave energy, Salinity gradient, Ocean Thermal Energy Conversion (OTEC) are discussed with opportunities and challenges.
Hydrokinetic Energy Opportunity for Rural Electrification in Nigeria Olatunji, Ogunjuyigbe Ayodeji Samson; Raphael, Ayodele Temitope; Yomi, Ibitoye Tahir
International Journal of Renewable Energy Development Vol 7, No 2 (2018): July 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.2.183-190

Abstract

This paper is part of the ongoing research by the Power, Energy, Machine and Drive (PEMD) research group of the Electrical Engineering Department of the University of Ibadan. The paper presents various sites with possible hydrokinetic energy potential in Nigeria with the aim of quantifying their energy potential for rural electrification application. Overview of hydrokinetic technology is also presented with the view of highlighting the opportunities and the challenges of the technology for rural electrification. A case study of using hydrokinetic turbine technology in meeting the energy demand of a proposed civic center in a remote community is demonstrated.  Some of the key findings revealed that Nigeria has many untapped hydrokinetic potential site and if adequately harnessed can improve the energy poverty and boost economic activities especially in the isolated and remote rural communities, where adequate river water resource is available. The total estimated untapped hydrokinetic energy potential in Nigeria is 111.15MW with the Northern part of the country having 68.18MW while the Southern part has 42.97MW. The case study shows that harnessing hydrokinetic energy of potential site is promising for rural electrification. This paper is important as it will serve as an initial requirement for optimal investment in hydrokinetic power development in Nigeria.Article History: Received November 16th 2017; Received in revised form April 7th 2018; Accepted April 15th 2018; Available onlineHow to Cite This Article: Olatunji, O.A.S., Raphael, A.T. and Yomi, I.T. (2018) Hydrokinetic Energy Opportunity for Rural Electrification in Nigeria. Int. Journal of Renewable Energy Development, 7(2), 183-190.https://doi.org/10.14710/ijred.7.2.183-190
A Visual Support of Standard Procedures for Solar Radiation Quality Control El Alani, Omaima; Ghennioui, Hicham; Ghennioui, Abdellatif; Saint-Drenan, Yves-Marie; Blanc, Philippe; Hanrieder, Natalie; Dahr, Fatima-Ezzahra
International Journal of Renewable Energy Development Vol 10, No 3 (2021): August 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.34806

Abstract

Solar irradiance data from high-quality ground-based measurements are primordial for different solar energy applications. In order to achieve the required accuracy, quality control procedures are of great benefit. A variety of approaches   have been proposed. In this sense, some approaches propose a visual representation of the routine, while others only provide a time series of binary flag values, and do not propose any specific visualization of the flagged data as opposed to non-flagged ones. In this regard, the present paper puts forward a complete routine including several quality control procedures for solar irradiance measurements by providing visual support for these different approaches. The visual tool in question was validated using five years research data with 10 minutes resolution of the global, diffuse and direct components of solar irradiation collected from three ground-based weather stations in Morocco. This visual tool puts forth a more precise idea of the measurement quality by detecting various errors, such as time shifts, outliers identification; either with one or two components, or consistency tests between the three components of solar radiation when available. The proposed tool can be regarded as a means of improving the detection rate of abnormal data as a first step in diagnosing the prominent causes of error.
Effect of Organic Waste Addition into Animal Manure on Biogas Production Using Anaerobic Digestion Method Arifan, Fahmi; Abdullah, Abdullah; Sumardiono, Siswo
International Journal of Renewable Energy Development Vol 10, No 3 (2021): August 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.36107

Abstract

One biomass form with a high potential to replace fossil fuels is biogas. Biogas yield production depends on the raw material or substrate used. This research was aimed to investigate a biogas production technique using an anaerobic digestion process based on a substrate mixture of a starter, cow dung, chicken manure, tofu liquid waste, and cabbage waste. The anaerobic digestion is a promised process to reduce waste while it is also producing renewable energy. Moreover, the process can digest high nutrients in the waste. The anaerobic digestion results showed that the combination producing the highest biogas amount was 200 mg starter mixed with a ratio of 70% cow dung, 15% chicken manure, and 15% tofu liquid waste. The larger the amount of cabbage waste, the lower the biogas production. The quadratic regression analysis was obtained for the variable with the highest yield and the estimated kinetic parameters based on the Gompertz equations revealed that the value of P∞ = 2,795.142 mL/gr.Ts, Rm = 113, 983.777 mL/gr.Ts, and t = 10.2 days. The results also concluded that the use of tofu liquid waste produced more biogas than cabbage waste. This study also successfully showed significant development in terms of the amount of biogas produced by adding organic waste to animal manure as the substrate used.
Evaluation of the Economic Profitability of Using Renewable Energy Sources in Agro-Industrial Companies Syromyatnikov, Denis; Druzyanova, Varvara; Beloglazov, Aleksandr; Bakshtanin, Alexander; Matveeva, Tatiana
International Journal of Renewable Energy Development Vol 10, No 4 (2021): November 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.37908

Abstract

The study of the impact of the availability of renewable energy sources (RES) on the competitiveness and cost reduction opportunities is an actual objective for agro-industrial enterprises in the present time. The purpose of this paper was to develop a methodological approach based on a questionnaire survey, an integrated indicator of enterprise competitiveness, a model for assessing energy conservation costs, and regression analysis combined with a hierarchical synthesis of 20 Russian agro-industrial companies. The solution of the problem of nonlinear optimization of agro-industrial companies made it possible to determine the excess of the competitiveness criterion over the criterion of energy conservation cost reduction as a result of the use of RES. The conducted regression analysis showed a close relationship between the competitiveness of the companies under study and the availability of RES. Modeling and hierarchical synthesis of the study results confirmed that the use of RES in the activities of agro-industrial companies stimulates their competitive potential reflected by the competitiveness index and minimizes energy conservation costs. It was also found that there is an inverse regression relationship with a high degree of correlation between the provision of RES and the cost of energy-saving measures. Hence, it can be argued that a greater emphasis on the provision of Russian agro-industrial enterprises with RES can lead to their more sustainable and efficient development due to increased competitiveness and better cost reduction strategies.
Design and Performance Evaluation of a Multi-Temperature Flat Plate Solar Collector Zwalnan, Selfa Johnson; Duvuna, Gideon Ayuba; Abakr, Yousif Abdalla; Banda, Tiyamike
International Journal of Renewable Energy Development Vol 10, No 3 (2021): August 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.33213

Abstract

The standard flat-plate solar collector utilises a single copper tube to remove the absorber plate’s heat. This type of collector’s primary purpose is to provide hot water for a single application. Hot water can be required for different applications at different temperatures. Besides, using the standard collector’s configuration may increase thermal demand and increase the collector’s size. Therefore, this study proposes a novel solar water heating configuration that uses three in-line fluid passages. The goal is to design a single collector that provides hot water for various uses: Sterilisation, washing, and postnatal care. Thus, the proposed system was modelled, and a numerical simulation conducted. This analysis compares the proposed system’s output and the standard collector’s output. The results showed that the thermal load demand was reduced by 27% when the hot water demand for these services was generated using three separate tanks. The serpentine collector’s efficiency with three fluid passages is increased by 20% compared to the traditional serpentine collector. The thermal energy delivered to meet load was 30% higher than that of the traditional serpentine system. The experimental and simulated system performance is in near agreement with an average percentage error Cv(RMSE) of 8.75% and confidence level NSE of about 87%. Since the proposed serpentine collector has a higher overall thermal production, it is recommended for use with hot water, which has to be heated to different temperatures.