cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
Jl. Imam Bardjo, No 4 Semarang 50241 INDONESIA
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
Published by Universitas Diponegoro
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.14710/ijred
Core Subject : Science,
The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass, Wind energy technology, Material science and technology, Low energy Architecture, Geothermal energy, Wave and Tidal energy, Hydro power, Hydrogen Production Technology, Energy Policy, Socio-economic on energy, Energy efficiency and management The journal was first introduced in February 2012 and regularly published online three times a year (February, July, October).
Articles 573 Documents
Modeling and Design of Azimuth-Altitude Dual Axis Solar Tracker for Maximum Solar Energy Generation Shufat, Salem Alaraby Ali; Kurt, Erol; Hancerlioğulları, Aybaba
International Journal of Renewable Energy Development Vol 8, No 1 (2019): February 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.1.7-13

Abstract

The sun tracking system that lets Parabolic Dish or PV panel orthogonal to the sun radiation during the day, can raise the concentrated sun radiation by up to 40%. The fixed Parabolic Dish cannot generally track the sun trajectory, also the single-axis tracking system can follow the sun in the horizontal direction (azimuth angle), while the two-axis tracker tracks the sun path in both azimuth and altitude angles. Dual axis automated control tracking system, which tracks the sun in two planes (azimuth and altitude) to move a Concentrated Parabolic Dish system to the direction of ray diffusion of sun radiation is studied and designed. The designed tracking system constructed of microcontroller or programmable logic control (PLC) with a digital program that operates sun tracker using driver, gear box to control the angular speed and mechanical torque, supports and mountings. Two steeper motors are modelled to guide the parabolic dish panel perpendicular to the sun's beam. In the present study, simulation scheme of two axis sun tracking system has been developed by operating under Matlab/Simulink. The program models and studies the effectiveness of overall system. The designed tracker has been studied with real data of sun trajectory angles (azimuth and altitude) as well as a Direct Normal Irradiation (DNI) to improve the effectiveness of parabolic dish panel by adding the tracking features to those systems according to the present site.©2019. CBIORE-IJRED. All rights reservedArticle History: Received May 18th 2018; Received in revised form October 8th 2018; Accepted January 6th 2019; Available onlineHow to Cite This Article: Shufat, S.A., Kurt, E, and Hancerlioğulları, A. (2019) Modeling and Design of Azimuth-Altitude Dual Axis Solar Tracker for Maximum Solar Energy Generation. Int. Journal of Renewable Energy Development, 8(1), 7-13.https://doi.org/10.14710/ijred.8.1.7-13
Financial Measures for Electric Vehicles:Supporting the Integration of Renewable Energy in the Mobility Sector in Germany Bickert, Stefan
International Journal of Renewable Energy Development Vol 3, No 1 (2014): February 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.1.45-53

Abstract

Electric vehicles (EV) are able to support the transition of sectors towards sustainability. The operation of these vehicles with renewable energies saves local and global emissions. Furthermore, fluctuating renewable energies can be integrated in existing energy systems by using electric vehicles for grid services. Thus, implementation of advantages requires market establishment of electric vehicles. The article provides a review on potentials of market development by comparing and studying costs of electric and conventional vehicles as well as effects of financial measures on costs of EV. These cost comparisons are based on market data and predictions of cost developments for private consumers in Germany. Costs are analysed by an economic model of Total Cost of Ownership (TCO), aiming to display financial proportionality between vehicles in different years of acquisition (2010 to 2030). In a further step, external financial measures are analysed and integrated in the cost model as one possibility to enhance and secure the market introduction. Findings demonstrate that higher costs of acquisition of electric vehicles cannot be compensated by lower costs of operation. While mobility costs of conventionally vehicles stay constant or even increase during the considered years, mobility costs of electric vehicles significantly decrease especially in the upcoming years. In all cases mobility costs of electric vehicles exceed costs of conventional vehicles, but differences are reduced from 19€ct in 2010 to 3€ct in 2030. Cost decreases of the battery have high influence on the increasing financial comparability of EV. Concerning financial measures especially a differentiation of energy prices and a compensation of grid services can help to decrease total costs of EV and to manage a shift from fossil energy resources to electricity in the mobility sector. The existing tax exemption for EV compensates only a little fraction (about 6%) of the cost difference. This highlights the importance of research on incentive schemes to support market integration of EV and thereby the integration of renewable energies in the mobility sector. This integration is supported by the possibility of storing surplus fluctuating renewable energy in the batteries of EV.
Differential Pulse Voltammetry Study for Quantitative Determination of Dysprosium (III) in Acetonitrile Solution Wyantuti, Santhy; Pratomo, Uji; Shauvina, Shauvina A; Hartati, Yeni Wahyuni; Bahti, Husein Hernandi
International Journal of Renewable Energy Development Vol 10, No 2 (2021): May 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.33486

Abstract

Dysprosium has gained global interest due to its key application in renewable technology, such as wind power technology. The presence of this rare earth element (REE) can be determined by several spectroscopic methods. Recently, a voltammetry method has provided an alternative method for the simple and fast detection of REEs. However, to the best of our knowledge, this experiment is usually carried out in an aqueous solvent, and the response of the REE in an organic solvent by the voltammetry method has rarely been investigated. In this research, the quantitative detection of dysprosium and dysprosium mixtures with samarium, europium and gadolinium in acetonitrile is reported by differential pulse voltammetry. A Box-Behnken design was applied to predict the optimum condition of the measurements. Three factors, namely potential deposition, deposition time and amplitude modulation, were found to significantly influence the signal under optimal conditions, which are -1.0 V, 83.64 s and 0.0929 V, respectively. The surface characterization of dysprosium deposited on a Pt surface shows better deposition under 100% acetonitrile compared to a lower concentration of acetonitrile. The evaluation in this study shows a detection limit of 0.6462 mg•L-1 and a quantitation limit of 2.1419 mg•L-1, with a precision value and recovery value of 99.97% and 93.62%, respectively.
Effect of Hydraulic Retention Time on Biogas Production from Cow Dung in A Semi Continuous Anaerobic Digester Haryanto, Agus; Triyono, Sugeng; Wicaksono, Nugroho Hargo
International Journal of Renewable Energy Development Vol 7, No 2 (2018): July 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.2.93-100

Abstract

The efficiency of biogas production in semi-continuous anaerobic digester is influenced by several factors, among other is loading rate. This research aimed at determining the effect of hydraulic retention time (HRT) on the biogas yield. Experiment was conducted using lab scale self-designed anaerobic digester of 36-L capacity with substrate of a mixture of fresh cow dung and water at a ratio of 1:1. Experiment was run with substrate initial amount of 25 L and five treatment variations of HRT, namely 1.31 gVS/L/d (P1), 2.47 gVS/L/d (P2), 3.82 gVS/L/d (P3), 5.35 gVS/L/d (P4) and 6.67 gVS/L/d (P5). Digester performance including pH, temperature, and biogas yield was measured every day. After stable condition was achieved, biogas composition was analyzed using a gas chromatograph. A 10-day moving average analysis of biogas production was performed to compare biogas yield of each treatment. Results showed that digesters run quite well with average pH of 6.8-7.0 and average daily temperature 28.7-29.1. The best biogas productivity (77.32 L/kg VSremoval) was found in P1 treatment (organic loading rate of 1.31 g/L/d) with biogas yield of 7.23 L/d. With methane content of 57.23% treatment P1 also produce the highest methane yield. Biogas production showed a stable rate after the day of 44. Modified Gompertz kinetic equation is suitable to model daily biogas yield as a function of digestion time.Article History: Received March 24th 2018; Received in revised form June 2nd 2018; Accepted June 16th 2018; Available onlineHow to Cite This Article: Haryanto, A., Triyono, S., and Wicaksono, N.H. (2018) Effect of Loading Rate on Biogas Production from Cow Dung in A Semi Continuous Anaerobic Digester. Int. Journal of Renewable Energy Development, 7(2), 93-100.https://doi.org/10.14710/ijred.7.2.93-100
Synthesis of Trimethylolpropane Esters of Calophyllum Methyl Esters : Effect of Temperature and Molar Ratio Widyawati, Yeti; Suryani, Ani; Romli, Muhammad; Sukardi, Sukardi
International Journal of Renewable Energy Development Vol 3, No 3 (2014): October 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.3.188-192

Abstract

Trimethylolpropane esters were synthesized by transesterification of calophyllum methyl esters and trimethylolpropane using a calcium oxide as the catalyst. The results showed that the optimal reaction conditions (temperature: 130 0C, reaction time: 5 h, reactant molar ratio: 3.9:1, catalyst amount 3%w/w, and formed  trimethylolpropane ester of 79.0% were obtained. The basic physicochemical properties of the trimethylolpropane esters were the following : kinematic viscosities of 56.40 cSt and 8.8 cSt at 40 0C and 100 0C,  viscosity index 193, flash point 218 0C and pour point -3 0C. So Methyl esters of fatty acids of would callophylum  methyl ester is good raw material for the synthesis of lubricating oils.
Effect of Fluid Flow Direction on Charging of Multitube Thermal Energy Storage for Flat Plate Solar Collectors Senthil, Ramalingam
International Journal of Renewable Energy Development Vol 10, No 2 (2021): May 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.34931

Abstract

Flat plate solar collector plays a significant role in domestic water heating due to the ease of operation and maintenance. Thermal energy storage with phase change materials is used to store heat energy. The thermal performance of paraffin wax-based multitube latent heat storage with a flat plate solar collector is investigated experimentally. The present work focuses on the fluid flow direction for charging and discharging in a vertical multitube-based thermal storage unit. The charging process took about four hours, with a fluid flow rate of 0.02 kg/s at about 70°C. The flat plate solar collector's thermal efficiency is 56.42% for the fluid flow rate of 0.02 kg/s at the average solar radiation of about 600 W/m2. During the discharge process, there was an increase in water temperature by 40°C at a fluid flow rate of 0.01 kg/s in 30 minutes. The 25-liters of water is circulated to discharge the stored heat. The heat storage effectiveness is varied between about 0.4 and 0.75. During the discharge, the flow of water from the center to the periphery showed about a 1.7% higher temperature than that of the water from the periphery to the center. For charging the heat storage, the preferred fluid flow mode is from the periphery to the center. The employment of latent heat storage with a solar collector is beneficial for our thermal needs after sunshine hours.
Performance evaluation of common rail direct injection (CRDI) engine fuelled with Uppage Oil Methyl Ester (UOME) Basavarajappa, D.N.; Banapurmath, N. R.; Khandal, S.V.; Manavendra, G.
International Journal of Renewable Energy Development Vol 4, No 1 (2015): February 2015
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.4.1.1-10

Abstract

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.
A novel single input double output (SIDO) converter for torque ripple minimization in solar powered BLDC motor Kommula, Bapayya Naidu; Kota, Venkata Reddy
International Journal of Renewable Energy Development Vol 8, No 2 (2019): July 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.2.161-168

Abstract

This paper proposes a new converter topology for torque ripple reduction in Brushless DC (BLDC) motor. Due to the torque ripple problem, the use of this motor is limited to few applications. In this paper, a Single Input Double Output (SIDO) converter is proposed to suppress the torque ripple in BLDC motor. The proposed SIDO converter provides two output voltages. One for supplying the motor throughout conduction time and second output voltage is given to the non-commutating phase of motor during commutation instants. This proposed SIDO converter is fed from Photo Voltaic (PV) system. This paper also presents a new Maximum Power Point Tracking (MPPT) based on trisection of Power-Voltage characteristics (TPVC) to attain the maximum power from the PV system. This scheme takes only 7 iterations to reach MPP. The intended configuration is developed and simulated in Matlab/Simulink environment. The results justify the superiority of proposed scheme that minimizes torque ripple in BLDC motor to only 6 to 12% from 50 to 80 % in conventional scheme and also extracts maximum power from PV system. ©2019. CBIORE-IJRED. All rights reserved
Effect of hydrothermal treatment temperature on the properties of sewage sludge derived solid fuel Yan, Mi; Prabowo, Bayu; Fang, Zhumin; Chen, Wei; Jiang, Zhiqiang; Hu, Yanjun
International Journal of Renewable Energy Development Vol 4, No 3 (2015): October 2015
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.4.3.163-169

Abstract

High moisture content along with poor dewaterability are the main challenges for sewage sludge treatment and utilization. In this study, the effect of hydrothermal treatment at various temperature (120-200 ËšC) on the properties of sewage sludge derived solid fuel was investigated in the terms of mechanical dewatering character, drying character, calorific value and heavy metal distribution. Hydrothermal treatment (HT) followed by dewatering process significantly reduced moisture content and improved calorific value of sewage sludge with the optimum condition obtained at 140ËšC. No significant alteration of drying characteristic was produced by HT. Heavy metal enrichment in solid particle was found after HT that highlighted the importance of further study regarding heavy metal behavior during combustion. However, it also implied the potential application of HT on sewage sludge for heavy metal removal from wastewater.
Experimental Studies of Interaction Forces Affect the Position of Vertical Plates on Oscillating Heave Plates with Cylindrical Bodies in Regular Waves Hadi, Eko Sasmito; Iqbal, Muhammad; Wibawa, Ari; Kurdi, Ojo; Karnoto, Karnoto
International Journal of Renewable Energy Development Vol 9, No 1 (2020): February 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.1.77-84

Abstract

This paper discusses an experimental study of a wave energy converter (WEC) without using reaction from the seabed. The WEC uses buoys and heave plates, which can react to their self-reacting. The interaction force between heave plates and buoys can absorb energy from ocean waves better. The heave plate model affects the output of energy produced. It is presented in this study with variations in the position of upright plates. The research aims to measure the influence of the place of the addition of vertical plates into heave plates on the WEC on the hydrodynamic performance (coefficient of mass increase, drag coefficient, and KC value) and the interaction of the force it produces with the buoy on regular waves. The conclusion is the vertical plate position makes the coefficient of mass added Ca increase with an increasing amount of KC, and an almost linear relationship was observed between them. As the frequency increases, the value of C increases slightly, but it is not clear. Thus, the oscillating frequency has little effect on the mass coefficient of added heave plates with vertical plates. Thus, the change in the vertical plate position has only a powerful effect on KC < 0.75. ©2020. CBIORE-IJRED. All rights reserved