cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
Jl. Imam Bardjo, No 4 Semarang 50241 INDONESIA
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
Published by Universitas Diponegoro
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.14710/ijred
Core Subject : Science,
The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass, Wind energy technology, Material science and technology, Low energy Architecture, Geothermal energy, Wave and Tidal energy, Hydro power, Hydrogen Production Technology, Energy Policy, Socio-economic on energy, Energy efficiency and management The journal was first introduced in February 2012 and regularly published online three times a year (February, July, October).
Articles 573 Documents
Impact of Photovoltaic Panel Orientation and Elevation Operating Temperature on Solar Photovoltaic System Performance Ebhota, Williams S.; Tabakov, Pavel Y
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.43676

Abstract

This study conducts optimum tilt angle and orientation of a standalone c-Si monocrystalline solar photovoltaic (PV) system deploying PVsyst software. The site of the hypothesized solar PV system is at 9, Mountain Rise, Berea, Durban, South Africa. This work presents values of tilt and azimuth angles and battery operating temperature that support optimal solar PV system performance. The range of angles considered for tilt and azimuth for a fixed PV panel mounting is 0° to 90° and -100° to 100°, respectively. Based on the report obtained from PVsyst design and simulation software, this study finds that: the highest available energy, specific energy, used energy, solar fraction, and lowest loss were recorded at tilt 40° and Azimuth 0°. Further, the longest battery service life was attained at an operating temperature between -2 °C to 20 °C. Hence, 40° and 0° are the optimum tilt and Azimuth angles, respectively while running the storage system at a temperature, not more than 20 °C.
Substitution Garden and Polyethylene Terephthalate (PET) Plastic Waste as Refused Derived Fuel (RDF) Zahra, Nurulbaiti Listyendah; Septiariva, Iva Yenis; Sarwono, Ariyanti; Qonitan, Fatimah Dinan; Sari, Mega Mutiara; Gaina, Pratiwi Claudia; Ummatin, Kuntum Khoiro; Arifianti, Qurrotin Ayunina Maulida Okta; Faria, Niswatun; Lim, Jun-Wei; Suhardono, Sapta; Suryawan, I Wayan Koko
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.44328

Abstract

The generation of polyethylene terephthalate (PET) plastic and garden waste must be recycled to support the circular economy. An alternative way to reduce the plastics waste is to reduce this waste by converting it into energy such as Refused Derived Fuel (RDF) as an alternative for processing waste. Substitution of plastic and garden waste is an opportunity to be analyzed. Hence, This study aimed to investigate the potential for converting material substitution from PET and garden waste into RDF. The RDF characterized test method was carried out by proximate, water content, ash content, and analysis. At the same time, the calorific value. was tested by bomb calorimetry. Substitution of the mixture of plastic and garden waste affects each parameter of RDF pellet quality including water, ash, and caloric value (sig.< 0.05). The increase of plastic waste in pellets consistently increases the calorific value of RDF from 18.94 until 25.04 MJ/kg. The RDF pellet water and ash content also invariably affect the rate of increase in the calorific value of RDF in the multilinearity model (sig.<0.05; R2 is 0.935). The thermal stability of the pellets occurred at a temperature of 5000C decomposition of hemicellulose, cellulose, and lignin in mixed garden waste with plastic in RDF pellets. The decrease in the decomposition of PET into terephthalic acid monomer from the thermal stability of raw materials and waste PET plastic pellets occurs at a temperature of 4500ËšC. This potential finding can be used as a basis for consideration in regions or countries that have the generation of garden waste and plastic, especially the type of PET to be used as an environmentally friendly fuel.
Public Support for Feed-in-Tariff and Net Energy Metering Policies in Malaysia: The Role of Policy Information Fatimah Azzahraa&#039; Mohd Sobri; Mariani Ariffin; Amir Hamzah Sharaai; Mohd Amran Radzi
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.44820

Abstract

Renewable energy (RE) policies have proven to be an effective tool for implementing RE. Despite various policies introduced, the RE deployment in Malaysia has been weak, especially individual RE uptake. Lack of policy support has been linked with inadequate policy awareness and information based on the knowledge deficit theory. This study investigates the support for the Feed-in-Tariff (FiT) and Net Energy Metering (NEM) policy of individual solar photovoltaic (PV) technology among landed residents in Malaysia and the effect of information provision on policy support. A Solomon-four-group design was employed to measure policy support and test the relationship between information provision and policy support using a set of Likert scale questionnaires and a poster of FiT and NEM policy prepared in layman's terms as an intervention. Results show that majority of the residents agree with the environmental mission of the policy, except for the reduction of fossil fuel usage. For the economic aspect, the residents prefer a fixed rate for RE produced and generally agreed that high electricity consumers should pay for the RE fund. However, residents were less enthusiastic about the percentage deducted from electricity bills and the 'high electricity consumer' baseline.  There was a significant difference between items scores at pre and post-test when given the intervention, in line with the deficit theory. Therefore, policy information should be communicated strategically, focusing on thepolicy's social and economic components that have the greatest influence on Malaysians.
Solar Tracking System with Photovoltaic Cells: Experimental Analysis at High Altitudes Elmer Rodrigo Aquino Larico; Angel Canales Gutierrez
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.43572

Abstract

There is currently an urgent need to study the application of solar energy to photovoltaic systems due to the need to produce electricity; indeed, maximizing the performance of solar energy promotes efficient and sustainable energy systems. The objective of this study was to determine the photovoltaic performance of a dual-axis solar tracker based on photovoltaic cells with different inclination angles at high altitudes above 3800 m.a.s.l. A solar tracking system activated by two linear actuators was implemented to automatically follow the trajectory of the sun during the day, and the results were compared with those from a fixed photovoltaic system. In addition, due to the climatic variation in the area, photovoltaic cells installed at different inclination angles were used to maximize electricity production and processed by a programmable logic controller (PLC). Finally, principal component analysis (PCA) was used to determine the factors that influenced the performance of the photovoltaic system during the experimental period. The results showed that the maximum monthly performance of the solar tracker was 37.63% greater than that of the fixed system, reaching 10.66 kWh/m2/d on sunny days in peak sun hours (PSH). On days with frequent rain and clouds, the partial yield was less than 14.38%, with energy production during PSH of 6.54 kWh/m2/d. Therefore, in this high-altitude area, the performance of the solar tracker was greater from July to October; from November to February, the performance was reduced due to the occurrence of rain.
Extracted Pomace Olive Oil Use for the Preparation of Starch Graft Copolymer Dayoub, Ola; Karam, Sami; Alkjk, Saeed; Soulayman, Soulayman
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.45107

Abstract

In this work, the relevant parameters of a pomace olive oil consecutive solvent extraction method using ethanol, and petroleum ether are investigated from dry and wet pomace samples. It is found that, oil extraction from dry samples with petroleum ether showed a high yield (11.72±0.30%) with solvent recovery of 89%, while extraction yield with ethanol is (11.1±0.60%) with solvent recovery of 90%. Moreover, it is found that the oil extraction from wet samples with ethanol is possible but the economic feasibility is not proven as the solvent recovery is of 62%. On the other hand, the possibility of hydrolysis of the crude extracted pomace oil in alkaline medium is demonstrated in this work. In this context, the starch grafting of the obtained long chain mono-fatty acids was accomplished in the presence of Fenton's reagent in a Dimethyl formamide (DMFA)/Water solution. Sonication is used for reaction mixture homogeny and the biopolymer was obtained using domestic microwave heating. After characterizing the obtained grafting polymer, it was employed to prepare a composite material with polyvinyl alcohol. The prepared PVA composite film of grafted starch (PVA/gSt) has tensile strength of (5.84 MPa) while its elongation modulus increased by 123.6%. Moreover, it was observed, in this work, that (PVA/gSt) copolymerization increases both the crystalline structure and the morphological order. This result is contrary to the available literature related to copolymerization of starch with different mono acids. It is found that, the consecutive solvent extraction method is of promising aspect from technical and economic point of view and the grafted starch compatibility with other polymers may be improved. The PVA/gSt films could be applied as packaging films.
Effect of Different Hydrothermal Temperatures on the Properties on Nano-Silica (SiO2) of Rice Husk Irzaman Irzaman; Irmansyah Irmansyah; Siti Aisyah; Nazopatul Patonah Har; Aminullah Aminullah
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.43904

Abstract

Rice husk has high silica (SiO2) content and can be used as the primary material for making nano-silica. One of the methods for synthesizing nano-silica was the hydrothermal method. The objective of this study was to synthesize nano-silica from rice husks by observing the effect of temperature in the hydrothermal process on the structure, electrical and particle properties of nano-silica. The hydrothermal process temperature was 150, 200, and 250 °C for 4 hours. The results showed that all nano-silicas were in the amorphous phase. The particle size was in the range of 0.16-13.49 nm with more uniform size distribution on nano-silicas of 200 °C and 250 °C than nano-silica at 150 °C. These three nano-silicas were included in the semiconductor category by increasing temperature and frequency. In addition, these treatment variations resulted 200 °C for 4 hours and pressure of 2 atm as the optimum treatment for manufacturing nano-silica of rice husk ash. This nano-silica could be used as semiconductor material for electronic industry.
Short Term Solar Irradiation Forecasting using CEEMDAN Decomposition Based BiLSTM Model Optimized by Genetic Algorithm Approach Anuj Gupta; Kapil Gupta; Sumit Saroha
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.45314

Abstract

An accurate short-term solar irradiation forecasting is requiredregarding smart grid stability and to conduct bilateral contract negotiations between suppliers and customers. Traditional machine learning models are unable to acquire and to rectify nonlinear properties from solar datasets, which  not only complicate  model formation but also lower prediction accuracy. The present research paper develops a deep learningbased architecture with a predictive analytic technique to address these difficulties. Using a sophisticated signal decomposition technique, the original solar irradiation sequences are decomposed  into multiple intrinsic mode functions to build a prospective feature set. Then, using an iteration strategy, a potential range of frequency associated to the deep learning model is generated. This method is  developed utilizing a linked algorithm and a deep learning network. In comparison with conventional models, the suggested model utilizes sequences generated through preprocessing methods, significantly improving prediction accuracywhen  confronted with a high resolution dataset created from a big dataset.On the other hand, the chosen dataset not only performs a massive data reduction, but also improves forecasting accuracy by up to 20.74 percent across a range of evaluation measures. The proposed model achieves lowest annual average RMSE (1.45W/m2), MAPE (2.23%) and MAE (1.34W/m2) among the other developed models for 1-hr ahead solar GHI, respectively, whereas forecast-skill obtained by the proposed model is 59% with respect to benchmark model. As a result, the proposed method might be used to predict short-term solar irradiation with greater accuracy using a solar dataset
A Brief Study on the Implementation of Helical Cross-Flow Hydrokinetic Turbines for Small Scale Power Generation in the Indian SHP Sector Jayaram Vijayan; Bavanish Balac Retnam
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.45249

Abstract

This article addresses the simulation and experiments performed on a Gorlov Helical Turbine (GHT) by altering the index of revolution of its helical blades. Gorlov Helical Turbine is a hydrokinetic turbine that generates energy from the perennial/tidal source. The paper serves a two-fold purpose: parametric optimisation of Gorlov Helical Turbine with respect to the index of revolution and viability of installing the turbines in river creeks. Nine models of turbines with a diameter of 0.600 m and a height of 0.600 m were generated with different indices of revolution and then subjected to simulation studies. A significant rise in the output torque of the turbine was not observed with the various indices of revolution, even as the probability of finding a section at every azimuthal position is likely to rise. Gavasheli's solidity ratio formula was used to formulate an expression for the output power. The output power as per analytical formulation is 1.11 W, which is of the order of output power obtained through simulation (0.951 W). The studies suggest that 0.25 remains the optimum value for the index of revolution of the helical blades. A model with 0.25 as the index of revolution was fabricated and tested at a river creek. The results were found to agree with the simulations accounting for the losses. The study results could encourage setting up hydrokinetic turbines in river creeks, thereby increasing the grid capacity of SHPs in India.
Operational Planning and Design of Market-Based Virtual Power Plant with High Penetration of Renewable Energy Sources Zahid Ullah; Muhammad Baseer
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.44586

Abstract

Renewable energy sources (RESs) are becoming more prevalent as a source of clean energy, and their integration into the power market is speeding up. The fundamental reason for this is the growing global concern about climate change. However, their weather-dependent and uncertain nature raise questions about grid reliability particularly, when photovoltaics (PVs) and wind turbines (WTs) technologies are used. As a result, rationally managing Energy Storage Systems (ESSs) under the virtual power plant (VPP) setting is being encouraged as a way of minimizing the impact of the uncertain nature of renewable energies. A VPP is comparatively a new concept that aggregates the capacities of dispatchable and non-dispatchable energy sources, electrical loads, and energy storage systems for the purpose of improving energy supply and demand imbalance. It enables individual consumers and producers to participate in the power markets. In this study, a new market-based (MB)-VPP operational planning model is designed and developed with the aim to evaluate the optimal active power dispatched by (WT, PV, and ESS) operating in the day-ahead power market to maximize the social welfare (SW) of the market. SW can be described as the maximization of the consumer’s benefit function minus the cost of energy generation. The optimization process was carried out by using a scenario-based approach to model the uncertainties of renewable energy sources (i.e, WTs & PVs) and load demand. The proposed model and method performance is validated by simulation studies on a 16-bus UK generic distribution system (UKGDS). The simulation results reveal that the proposed approach maximizes overall system social welfare. The capacity of total active power dispatched by (WT, PV, and ESS) has a positive impact on the VPP profit maximization. This empirical study could be used as a reference baseline model for other energy services providers interested in conducting similar research in the future.
RETRACTED: Control of Bidirectional DC-DC Converter for Micro-Energy Grid’s DC Feeders' Power Flow Application Muhammad Hammad Saeed; Wang Fangzong; Basheer Ahmed Kalwar
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.41952

Abstract

Referred to by: Retraction notice to ‘Control of Bidirectional DC-DC Converter for Micro-Energy Grid’s DC Feeders' Power Flow Application' IJRED 11(2), 533-546International Journal of Renewable Energy Development, 12(6). https://doi.org/10.14710/ijred.2023.57139