cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
Jl. Imam Bardjo, No 4 Semarang 50241 INDONESIA
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
Published by Universitas Diponegoro
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.14710/ijred
Core Subject : Science,
The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass, Wind energy technology, Material science and technology, Low energy Architecture, Geothermal energy, Wave and Tidal energy, Hydro power, Hydrogen Production Technology, Energy Policy, Socio-economic on energy, Energy efficiency and management The journal was first introduced in February 2012 and regularly published online three times a year (February, July, October).
Articles 573 Documents
The Effect of Trailing Edge Profile Modifications to Fluid-Structure Interactions of a Vertical Axis Tidal Turbine Blade Nu Rhahida Arini; Stephen R Turnock; Mingyi Tan
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.44669

Abstract

Renewable energy has become an essential energy alternative since the continual depletion of non-renewable energy resources and increasing environmental issues. Tidal energy is a promising future renewable resource which can be extracted using a vertical axis tidal turbine. Since it was proposed, a tidal turbine performance requires improvements which can be obtained by a blade’s trailing edge modification. Modifying the blade’s trailing edge profile is confirmed to be one way to improve a turbine’s work. However, the influence of a trailing edge modifications on a vertical axis tidal turbine blade’s interaction with fluid has not been fully understood, thus the fluid induced vibration as the fluid behaviour working on a vertical axis tidal turbine blade has not been completely discovered. In this paper, 2D fluid-structure interactions of modified vertical axis tidal turbine blades are examined and modelled using OpenFOAM. Three different modified blade profiles are proposed: sharp, rounded, and blunt. The modified profiles are employed to an original NACA 0012 blade and their influences on a vertical axis tidal turbine blade interaction are observed. The result discovers the fluid behaviour and fluid-induced vibrations at all positions (represented by 12 positions) over one turbine’s cycle. The results demonstrate the frequency domain blade velocities and time domain blade displacements for all modified blades. The fluid behaviour around the blade is confirmed by pressure distribution plots over the blade’s upper and lower surfaces. The results show that the blunt profile provides less frequent vibrations due to a reducing vorticity in the downstream fluid regime. However, the vibration amplitude that occurs on the blunt blade is higher than those of rounded and sharp profiles. Based on this research, the blunt trailing edge profile appears to be more favourable to be applied and used for vertical axis tidal turbine blades.
Experimental Evaluation of Thermohydraulic Performance of Tubular Solar Air Heater Yousif Fateh Midhat; Issam Mohammed Ali Aljubury
International Journal of Renewable Energy Development Vol 12, No 1 (2023): January 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.45312

Abstract

The thermohydraulic performance of a new design solar air heater (SAH) design was examined experimentally in this paper as a trial to improve the flat-plate SAH’s efficiency. A flat-plate solar air heater (FPSAH) and a jacketed tubular solar air heater (JTSAH) having similar dimensions were constructed to compare their thermal performance efficiencies. A band of Aluminum jacketed tubes   were arranged side by side in parallel to the airflow direction to form the absorber of a jacketed tubular solar air heater (JTSAH). The experiments were accomplished at three mass flow rates (MFR)s: 0.011 kg/s. 0.033 kg/s, and 0.055 kg/s. Results revealed that the maximum temperature difference was obtained from JTSAH at 38°C in comparison to 32°C from the FPSAH at MFR of 0.011 kg/s. The thermal losses from the upper glass cover of the JTSAH were less than the same losses at the FPSAH due to the reduced absorber and glass temperatures of the JTSAH. The gained power  was higher at the JTSAH than the FPSAH. At the JTSAH, at 0.055 kg/s MFR, the maximum average thermal efficiency obtained was 81%, and the maximum average thermos-hydraulic efficiency obtained was 75.61 %. It is noted that increasing the MFR increases the thermal efficiency, also, its optimum value rises the thermos-hydraulic efficiency to a specific optimum point. The pressure drop increases with the MFR and JTSAH compared to the FPSAH
Effect of Adding Combustion Air on Emission in a Diesel Dual-Fuel Engine with Crude Palm Oil Biodiesel Compressed Natural Gas Fuels Dori Yuvenda; Bambang Sudarmanta; Arif Wahjudi; Rozy Aini Hirowati
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.41275

Abstract

A diesel dual-fuel engine uses two fuels designed to reduce the consumption of fossil fuels. Generally, the specific fuel consumption of diesel dual-fuel engines has increased.  However, in   combination with alternative fuels, namely compressed natural gas injected through air intake, the use of diesel fuel can be reduced. However, using two fuels in a diesel dual-fuel engine increases the equivalent ratio; therefore, the air and fuel mixture becomes richer because the air entering the cylinder during the intake stroke is partially replaced by compressed natural gas. This results in incomplete combustion and increases exhaust emissions, particularly hydrocarbon (HC) and carbon monoxide (CO) emissions. This study aims to improve the combustion process in dual-fuel diesel engines by improving the air-fuel ratio; thus, it can approach the stoichiometric mixture by adding combustion air forcibly to produce complete combustion to reduce CO and HC emissions. An experimental approach using a single-cylinder diesel engine modified into a diesel dual-fuel engine powered by crude palm oil biodiesel and compressed natural gas was adopted. The combustion air was forcibly added to the cylinder using an electric supercharger at different air mass flow rates ranging from 0.007074 to 0.007836 kg/s and different engine loads (1000 to 4000 watts). The results indicated that adding more air to the cylinder could produce complete combustion, reducing the emission levels produced by a diesel dual-fuel engine. An air mass flow rate of 0.007836 kg/s can reduce CO, HC, and particulate matter emissions by averages of 60.55%, 49.63%, and 86.87%, respectively, from the standard diesel dual-fuel engine. Increasing in the amount of oxygen concentration improves the quality of the air-fuel ratio, which results in improved combustion and thereby reducing emissions.
Performance Evaluation of An Electrolyte-Supported Intermediate-Temperature Solid Oxide Fuel Cell (IT-SOFC) with Low-Cost Materials Fauzi Yusupandi; Hary Devianto; Pramujo Widiatmoko; Isdiriayani Nurdin; Sung Pil Yoon; Tae-Hoon Lim; Aditya Farhan Arif
International Journal of Renewable Energy Development Vol 11, No 4 (2022): November 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.46735

Abstract

Intermediate temperature solid oxide fuel cell (IT-SOFC) provides economic and technical advantages over the conventional SOFC because of the wider material use, lower fabrication cost and longer lifetime of the cell components. In this work, we fabricated electrolyte-supported IT-SOFC using low-cost materials such as calcia-stabilized zirconia (CSZ) electrolyte fabricated by dry-pressing, NiO-CSZ anode and Ca3Co1.9Zn0.1O6 (CCZO) cathode produced through brush coating technique. According to the XRD result, the monoclinic phase dominated over the cubic phase, and the relative density of the electrolyte was low but the hardness of the CSZ electrolyte was close to the hardness of commercial 8YSZ electrolyte. The performance of the single cell was performed with hydrogen ambient air. An open-circuit voltage (OCV) of 0.43, 0.46, and 0.45 V and a maximum power density of 0.14, 0.50, and 1.00 mW/cm2 were achieved at the operating temperature of 600, 700, and 800 °C, respectively. The ohmic resistance of the cell at 700 and 800 °C achieved 81.5 and 33.00 Ω, respectively due to the contribution of thick electrolyte and Cr poisoning in electrodes and electrolyte
Univariate and Multivariate LSTM Models for One Step and Multistep PV Power Forecasting Tariq Limouni; Reda Yaagoubi; Khalid Bouziane; Khalid Guissi; El Houssain Baali
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.43953

Abstract

The energy demand is increasing due to population growth and economic development. To satisfy this energy demand, the use of renewable energy is essential to face global warming and the depletion of fossil fuels. Photovoltaic energy is one of the renewable energy sources, widely used by several countries over the world. The integration of PV energy into the grid brings significant benefits to the economy and environment, however, high penetration of this energy also brings some challenges to the stability of the electrical grid, due to the intermittency of solar energy. To overcome this issue, the use of a forecasting system is one of the solutions to guarantee an effective integration of PV plants in the electrical grid. In this paper, a PV power ultra short term forecasting has been done by using univariate and multivariate LSTM models. Different combinations of input variables of the models and different timesteps forecasting were tested and compared. The main aim of this work is to study the influence of the different combinations of variables on the accuracy of the LSTM models for one-step forecasting and multistep forecasting and comparing the univariate and multivariate LSTM models with MLP and CNN models  . The results show that for one step forecasting, the use of a univariate model based on historical data of PV output power is sufficient to get accurate forecasting with 28.98W in MAE compared to multivariate models that can reach 35.39W. Meanwhile, for multistep forecasting, it is mandatory to use a multivariate model that has historical data of meteorological variables and PV output power in the input of LSTM model. Moreover, The LSTM model shows great accuracy compared to MLP and CNN especially in multistep PV power forecasting.
Kinetic Modeling and Optimization of Biomass Gasification in Bubbling Fluidized Bed Gasifier Using Response Surface Method Tolossa Kebede Tulu; Samson Mekbib Atnaw; Robera Daba Bededa; Demeke Girma Wakshume; Venkata Ramayya Ancha
International Journal of Renewable Energy Development Vol 11, No 4 (2022): November 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.45179

Abstract

This paper presents the kinetic modeling of biomass gasification in bubbling fluidized bed (BFB) gasifiers and optimization methods to maximize gasification products. The kinetic model was developed based on two-phase fluidization theory. In this work, reaction kinetics, hydrodynamic conditions, convective and diffusion effect, and the thermal cracking of tar kinetics were considered in the model. The model was coded in MATLAB and simulated. The result depicted good agreement with experimental work in literature. The sensitivity analysis was carried out and the effect of temperature ranging from 650  to 850  and steam to biomass ratio (S/B) ranging from 0.1 to 2 was investigated. The result showed that an increase in temperature promoted H2 production from 18.73 % to 36.87 %, reduced that of CO from 39.97 % to 34.2 %, and CH4 from 18.01 % to 11.65 %. Furthermore, surface response was constructed from the regression model and the mutual effect of temperature and S/B on gasification products and heating value was investigated. In addition, the desirability function was employed to optimize gasification product and heating value. The maximum gasification product yield was obtained at 827.9  and 0.1 S/B. The response predicted by desirability function at these optimum operational conditions was 30.1 %, 44.1 %, 13.2 %, 12.9 %, 14.035 MJ/Nm3, and 14.5 MJ/Nm3 for H2, CO, CO2, CH4, LHV, and HHV, respectively. Kinetic modeling of the biomass gasification in BFB process is still under development, which considers the diffusion effect, tar cracking, reaction kinetics, and hydrodynamic behavior. Moreover, the large number of previous studies gave priority to a single parameter investigation. However, this investigation can be extended to various parameters analysis simultaneously, which would give solid information on system performance analysis.
Energy Management Strategy Based on Marine Predators Algorithm for Grid-Connected Microgrid Amel Kheiter; Slimane Souag; Abdellah Chaouch; Abdelkader Boukortt; Benaissa Bekkouche; Mohammed Guezgouz
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.42797

Abstract

This work aims to optimize the economic dispatch problem of a microgrid system in order to cover the load of a commercial building in Algeria. The analyzed microgrid system is connected to the power grid and composed of photovoltaic panels (PV), wind turbine, battery energy storage system (BESS) and diesel generator. To ensure energy balance and the flow of energy, we have implemented an energy management strategy based on Marine Predator Algorithm (MPA) and Multilayer Perceptron Neural Network (MLPNN), which guarantee an optimal economic operation of the system. First, using historical meteorological data, the power generation is forecasted a day-ahead using MLPNN, which allows the optimization of the microgrid operation. Second, the proposed strategy has been studied under three different microgrid configurations. Eventually, the performances of MPA are compared against well-known algorithms. The results indicate that the integration of the PV-BESS microgrid system significantly reduces the daily operating cost up to 34.5%. Due to the availability of wind resources in the studied area, the addition of a wind turbine to the microgrid minimizes the operating cost by 43.96% compared to the operating cost of the power grid. In the case of selling excess energy to the main power grid, the operating cost could be decreased as much as 49.33%.
Optimization of Aeration for Accelerating Municipal Solid Waste Biodrying Panida Payomthip; Sirintornthep Towprayoon; Chart Chiemchaisri; Suthum Patumsawad; Komsilp Wangyao
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.45143

Abstract

Biodrying technology is commonly used in Thailand to produce refuse-derived fuel (RDF), however, this technology remains ineffective on high-moisture waste. Air supply is key to ensuring homogenous temperature development within the waste matrix during biodrying, increasing RDF quality. This study investigated negative aeration during local municipal solid waste biodrying to meet RDF standards in reduced time. Lysimeter experiments were performed on pre-shredded waste (300 kg/m3) using different aeration patterns. The temperature, vent gas oxygen level, weight loss, and leachate volume during the biodrying process were monitored. In addition, the treated waste’s temperature, moisture, and heating values were evaluated to determine the biodrying process efficiency. The results indicate that shorter heating phases can be achieved during continuous aeration. No significant temperature variation was observed in the waste layers, with a low standard deviation of 1.96% during constant air supply, indicating homogeneous temperature development during the biodrying process. The vent gas contained 15–20% oxygen and non-detectable methane, evidencing sufficient air supply. The total heat development was independent of aeration pattern; therefore, biodrying was unaffected by excess air supply at a 95% confidence level. The highest weight loss and moisture content reduction were 25% and 66%, respectively. The optimal aeration was continuous mode with non-excessive aeration, increasing the lower heating value from 2,884.0 to 4,938.0 kCal/kg, and reducing the moisture content from 48.5% to 22.2%. RDF quality can be improved 1.7 times to meet Thailand’s standards within a short biodrying period of 7 days using homogeneous temperature distribution operated under continuous aeration
Effect of a Detached Bi-Partition on the Drag Reduction for Flow Past a Square Cylinder Youssef Admi; Salaheddine Channouf; El Bachir Lahmer; Mohammed Amine Moussaoui; Mohammed Jami; Ahmed Mezrhab
International Journal of Renewable Energy Development Vol 11, No 4 (2022): November 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.43619

Abstract

The objective of this research is to study the fluid flow control allowing the reduction of aerodynamic drag around a square cylinder using two parallel partitions placed downstream of the cylinder using the lattice Boltzmann method with multiple relaxation times (MRT-LBM). In contrast to several existing investigations in the literature that study either the effect of position or the effect of length of a single horizontal or vertical plate, this work presents a numerical study on the effect of Reynolds number (Re), horizontal position (g), vertical position (a), and length (Lp) of the two control partitions. Therefore, this work will be considered as an assembly of several results presented in a single work. Indeed, the Reynolds numbers are selected from 20 to 300, the gap spacing (0 ≤ g ≤ 13), the vertical positions (0 ≤ a ≤ 0.8d), and the lengths of partitions (1d ≤  Lp ≤  5d). To identify the different changes appearing in the flow and forces, we have conducted in this study a detailed analysis of velocity contours, lift and drag coefficients, and the root-mean-square value of the lift coefficient. The obtained results revealed three different flow regimes as the gap spacing was varied. Namely, the extended body regime for 0 ≤ g ≤ 3.9, the attachment flow regime for 4 ≤ g ≤ 5.5, and the completely developed flow regime for 6 ≤ g ≤ 13. A maximal percentage reduction in drag coefficient equal to 12.5%, is given at the critical gap spacing (gcr = 3.9). Also, at the length of the critical partition (Lpcr = 3d), a Cd reduction percentage of 12.95% was found in comparison with the case without control. Moreover, the position of the optimal partition was found to be equal to 0.8d i.e. one is placed on the top edge of the square cylinder and the second one is placed on the bottom edge. The maximum value of the lift coefficient is reached for a plate length Lp = 2d when the plates are placed at a distance g = 4. On the other hand, this coefficient has almost the same mean value for all spacings between the two plates. Similarly, the root means the square value of the lift coefficient (Clrms) admits zero values for low Reynolds numbers and then increases slightly until it reaches its maximum for Re = 300.
Decision Support for Investments in Sustainable Energy Sources Under Uncertainties Kenneth Ian Talosig Batac; Angelie Azcuna Collera; Resy Ordona Villanueva; Casper Boongaling Agaton
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.45913

Abstract

Investment in sustainable energy sources is one of the climate mitigation strategies that can significantly reduce greenhouse gas emissions in the energy sector. However, in developing countries, investment is challenged by high capital expenditures and several uncertainties. This paper aims to provide decision support for investment in sustainable energy projects by evaluating the comparative attractiveness of shifting energy sources from fossil fuels to renewables and nuclear. Applying the real options approach (ROA), this paper calculates the value of the flexibility to postpone the investment decision and identifies the optimal timing (described here as the trigger price of coal) for shifting to sustainable energy sources. Then, various uncertainties are considered, such as coal and electricity prices, negative externality of using fossil fuels, and the risk of a nuclear accident, which are modelled using geometric Brownian motion, Poisson process, and Bernoulli probability. Applying the ROA model in the case of the Philippines, results find that investing in sustainable energy is a better option than continuing to use coal for electricity generation. However, contrary to conventional option valuation result that waiting is a better strategy, this study found that delaying or postponing the investment decisions may lead to possible opportunity losses. Among the available sustainable energy sources, geothermal is the most attractive with trigger prices of coal equal to USD 49.95/ton, followed by nuclear (USD 58.55/ton), wind (USD 69.48/ton), solar photovoltaic (USD 72.04/ton), and hydropower (USD 111.14/ton). Also, the occurrence of jump (extreme) prices of coal, raising the current feed-in-tariff, and considering negative externalities can decrease the trigger prices, which favor investments in sustainable energies. Moreover, the risk of a nuclear disaster favors investment in renewable energy sources over nuclear due to the huge damage costs once an accident occurs. Results provide bases for policy recommendations toward achieving a more secure and sustainable energy sector for developing countries that are highly dependent on imported fossil fuels.