cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
MATEMATIKA
Published by Universitas Diponegoro
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 300 Documents
ANALISIS KESTABILAN MODEL DINAMIK ALIRAN FLUIDA DUA FASE PADA SUMUR PANAS BUMI Utomo, Robertus Heri Soelistyo; ., Widowati; Tjahjana, Redemtus Heru; Niswah, L
MATEMATIKA Vol 17, No 1 (2014): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (11071.07 KB)

Abstract

In this paper is discussed about the analysis of the stability of fluid flow dynamical model of two phases on the geothermal wells. The form of the model is non-linear differential equation. To analyze the local stability around the equilibrium point, first, the non linear models of is linearized around the equilibrium point using Taylor series. Further, from linearized model, we find a Jacobian matrix, where all of the real eigen values of the Jacobian matrix are zeros. So that the behviour of the dynamical system obtained around the equilibrium point is stable.  
EKUIVALENSI RING RICKART DAN RING BAER BESERTA *-RINGNYA hanifah, Hanifah
MATEMATIKA Vol 12, No 2 (2009): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5.56 KB)

Abstract

Rickart ring and Baer ring as well as its *-ring are a particular form of ring where its annihillator is generated by an idempotent element or projection. By using concept of annihilator, idempotent, projection and inexistence of zero divisor on ring can be showed equivalent among the rings.  
PEMODELAN STATISTIKA DENGAN TRANSFORMASI BOX COX Ispriyanti, Dwi
MATEMATIKA Vol 7, No 3 (2004): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (67.22 KB)

Abstract


BILANGAN DOMINASI PERSEKITARAN PADA GRAF LENGKAP DAN GRAF BIPARTIT LENGKAP Ratnasari, Lucia; Surarso, Bayu; Harjito, Harjito; Maunah, Uun
MATEMATIKA Vol 20, No 1 (2017): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1321.963 KB)

Abstract

Given graph  with set of vertex  and set of edge E. Set  subset of  is called domination set if every point in  is adjacent with at least one point in  in graph . The minimum cardinality of all set of domination graph  is called domination number. Let  be a subset of , set  is called a neighborhood set if  with   induced subgraph  of . The minimum cardinality of all the neighborhood set of graph  is called the neighborhood number. There are several types of neighborhood domination number depending on the parameters. In this paper we examine the transversal neighborhood domination number and global neighborhood domination number in complete graph and complete bipartite graph.
METODA BEDA HINGGA PADA PERSAMAAN KDV GELOMBANG INTERFACE Wiryanto, L.H; Djohan, Warsoma
MATEMATIKA Vol 9, No 1 (2006): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (86.428 KB)

Abstract

Propagation of interfacial wave, modeled in an equation of KdV type, is solved numerically. A finite different method is used to construct a system of linear equations from the model, and the system is solved by Gauss-Seidel method. This numerical procedure is firstly tested for solitary wave, which gives agreement to the analytical solution, and is then used to observe a simulation of wave propagation generated on the left by a generator, for some various values of parameters, depth and fluid density
METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Heri, Robertus
MATEMATIKA Vol 6, No 2 (2003): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (74.215 KB)

Abstract

Tulisan ini membahas penentuan persamaan ruang keadaan dari sistem waktu diskrit dalam bentuk: kanonik terkontrol, kanonik terobservasi, kanonik diagonal, serta kanonik Jordan dengan menggunakan metoda pemrograman langsung, pemrograman bersarang dan perluasan pecahan sebagian. Juga dibahas ketidaktunggalan persamaan ruang keadaan dari suatu sistem yang diberikan, yang dibuktikan dengan relasi antara dua vektor keadaan yang berdimensi sama, dimana satu sama lain dihubungkan oleh sebarang matriks non singular.
MODEL SISTEM MULTI AGEN LINEAR DENGAN FORMASI SEGITIGA Tjahjana, Redemtus Heru
MATEMATIKA Vol 13, No 3 (2010): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (83.147 KB)

Abstract

In this paper, a linear model of multi agent movement in equilateral triangle formation is considered. The agents have initial and final state in triangular formation. Along the motion, all agents can not move far away and collide. The agents are steered from initial position to final position in fixed time. For this goal, optimal control with Pontryagin Maximum Principle  is applied and the classic difficulty in the optimal control problem is appear. To solve the classic difficulty above, the steepest descent method is used.
ESTIMASI REGRESI WAVELET THRESHOLDING DENGAN METODE BOOTSTRAP Suparti, Suparti; Mustofa, Achmad; Rusgiyono, Agus
MATEMATIKA Vol 10, No 2 (2007): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (109.952 KB)

Abstract

Wavelet is a function that has the certainly characteristic for example, it oscillate about zero point ascillating, localized in the time and frequency domain and construct the orthogonal bases in  L2(R) space. On of the wavelet application is to estimate non parametric regression function. There are two kinds of wavelet estimator, i.e., linear and non linear wavelet estimator. The non linear wavelet estimator is called a thresholding wavelet rstimator. The application of the bootstrap methode in the thresholding wavelet function estimation is resample the wavelet coefficient of residual. The best of the thresholding wavelet estimator with bootstrap method has minimal of mean square error (MSE). The minimal MSE depend from the number of replication.  
MODEL PERTUMBUHAN LOGISTIK DENGAN KONTROL OPTIMAL PENYEBARAN DEMAM BERDARAH DENGUE ., Kartono; ., Widowati; Utomo, Robertus Heri Soelistyo; Tjahjana, Redemtus Heru
MATEMATIKA Vol 18, No 1 (2015): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (47.035 KB)

Abstract

Controlling of spread of dengue fever was sought by the government together with the people by, among others, campaigning “3M controlling” and eradicating of the vector population using insecticide and threating the infected people. The aim of this research is constructing the optimal control dynamic model by applying several strategies to control the spread of dengue fever. In this paper, the optimal control is constructed by using host logistic growth population model approach and then it is solved by using maximum Pontryagin principle. The results show that in the equilibrium condition, the effect of the control variable u1 (“3M campaigning” and eradicating of the mosquito by using insecticide) is strongly affected by the rate of the direct contact between host population and the infected and susceptible vector whereas the control variable u2 is strongly affected by the number of the infected host population
METODE PENYELESAIAN MASALAH CAUCHY DEGENERATE NONHOMOGEN MELALUI PENYELESAIAN MASALAH CAUCHY NONDEGENERATE NONHOMOGEN hariyanto, Susilo
MATEMATIKA Vol 11, No 3 (2008): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (81.615 KB)

Abstract

In this article, we investigate how to solve abstract degenerate Cauchy problems nonhomogen via abstract nondegenerate Cauchy problems nonhomogen. The problem are discussed in the Hilbert space H  which can be written as an orthogonal direct sum of Ker M and . Under certain assumptions it is possible to reduce the problems to an equivalent  nondegenerate Cauchy problem in the factor space   H/Ker M  which can be easier to solve. Moreover we defines an operator ZA which maps the solutions of abstract nondegenerate Cauchy problems nonhomogen to abstract degenerate Cauchy problems nonhomogen  

Filter by Year

2001 2017


Filter By Issues
All Issue Vol 20, No 2 (2017): JURNAL MATEMATIKA Vol 20, No 1 (2017): JURNAL MATEMATIKA Vol 19, No 3 (2016): Jurnal Matematika Vol 19, No 2 (2016): Jurnal Matematika Vol 19, No 1 (2016): Jurnal Matematika Vol 18, No 1 (2015): Jurnal Matematika Vol 17, No 3 (2014): Jurnal Matematika Vol 17, No 2 (2014): Jurnal Matematika Vol 17, No 1 (2014): Jurnal Matematika Vol 16, No 1 (2013): Jurnal Matematika Vol 15, No 1 (2012): JURNAL MATEMATIKA Vol 14, No 3 (2011): Jurnal Matematika Vol 14, No 2 (2011): JURNAL MATEMATIKA Vol 14, No 1 (2011): JURNAL MATEMATIKA Vol 10, No 2 (2007): JURNAL MATEMATIKA Vol 13, No 3 (2010): JURNAL MATEMATIKA Vol 13, No 2 (2010): JURNAL MATEMATIKA Vol 13, No 1 (2010): JURNAL MATEMATIKA Vol 12, No 3 (2009): JURNAL MATEMATIKA Vol 12, No 2 (2009): JURNAL MATEMATIKA Vol 12, No 1 (2009): JURNAL MATEMATIKA Vol 11, No 3 (2008): JURNAL MATEMATIKA Vol 11, No 2 (2008): Jurnal Matematika Vol 11, No 1 (2008): JURNAL MATEMATIKA Vol 10, No 3 (2007): JURNAL MATEMATIKA Vol 10, No 1 (2007): JURNAL MATEMATIKA Vol 9, No 3 (2006): JURNAL MATEMATIKA Vol 9, No 2 (2006): JURNAL MATEMATIKA Vol 9, No 1 (2006): JURNAL MATEMATIKA Vol 8, No 3 (2005): JURNAL MATEMATIKA Vol 8, No 1 (2005): JURNAL MATEMATIKA Vol 2, No 8 (2005): JURNAL MATEMATIKA Vol 7, No 3 (2004): JURNAL MATEMATIKA Vol 7, No 2 (2004): JURNAL MATEMATIKA Vol 7, No 1 (2004): JURNAL MATEMATIKA Vol 6, No 3 (2003): Jurnal Matematika Vol 6, No 2 (2003): Jurnal Matematika Vol 6, No 1 (2003): Jurnal Matematika Vol 5, No 3 (2002): Jurnal Matematika Vol 5, No 2 (2002): Jurnal Matematika Vol 5, No 1 (2002): Jurnal Matematika Vol 4, No 3 (2001): Jurnal Matematika Vol 4, No 2 (2001): JURNAL MATEMATIKA Vol 4, No 1 (2001): JURNAL MATEMATIKA More Issue