cover
Contact Name
Adi Darmawan
Contact Email
adidarmawan@live.undip.ac.id
Phone
-
Journal Mail Official
jksa@live.undip.ac.id
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
JURNAL KIMIA SAINS DAN APLIKASI
Published by Universitas Diponegoro
ISSN : 14108917     EISSN : 25979914     DOI : -
urnal Kimia Sains dan Aplikasi (p-ISSN: 1410-8917) and e-ISSN: 2597-9914) is published by Department of Chemistry, Diponegoro University. This journal is published four times per year and publishes research, review and short communication in field of Chemistry.
Arjuna Subject : -
Articles 796 Documents
Biosynthesis of Gold Nanoparticles Mediated by Andaliman Fruit Water Extract and Its Application as Antioxidants Gusti Ayu Dewi Lestari; Kadek Duwi Cahyadi
Jurnal Kimia Sains dan Aplikasi Vol 25, No 2 (2022): Volume 25 Issue 2 Year 2022
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (729.738 KB) | DOI: 10.14710/jksa.25.2.56-62

Abstract

Plant extract-mediated green synthesis of gold nanoparticles (AuNPs) is currently gaining significant interest in the field of nanotechnology. In this study, AuNPs were synthesized using an aqueous extract of Andaliman fruit (Zanthoxylum acanthopodium DC.). The formation of AuNPs was confirmed by observing the color change of the solution from clear to cherry red. The reaction parameters, namely the extract concentration and the ratio of the mixture of the extract with HAuCl4 solution, were optimized for the AuNPs biosynthesis. The gold nanoparticles were characterized using a UV-Vis spectrophotometer, SEM-EDS, and particle size analyzer. The characterization suggested that AuNPs had a maximum wavelength ranging of 540–559 nm, with spherical crystals morphology where the highest component was gold at 36.01% and the size below 100 nm on average. The antioxidant activity of the synthesized AuNPs was determined using the DPPH method. It showed that the highest free radical scavenging activity was 83%, given by 20 ppm AuNPs.
Antibacterial Activities of Micromonospora sp. 2310 Isolated from Marine Sediment, Baru Island, West Kalimantan Risa Nofiani; Puji Ardiningsih
Jurnal Kimia Sains dan Aplikasi Vol 25, No 1 (2022): Volume 25 Issue 1 Year 2022
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (393.735 KB) | DOI: 10.14710/jksa.25.1.20-26

Abstract

The increase in cases of antibiotic resistance and the discoveries cessation of new classes of antibiotics encourages the exploration of various microorganism sources from unique environments to produce antimicrobial compounds. This study aimed to characterize actinobacteria isolated from marine sediment and evaluate the best medium and incubation time for its antibacterial activities. The sediment sample collected from Buru Island, West Kalimantan, was isolated actinobacteria and characterized based on morphological, biochemical, and molecular (16S rRNA gene) approaches. Antibacterial activities were tested using the well-diffusion methods. Twelve suspected colonies were successfully purified. Isolate 2310, which showed a different morphology colony, was close to Micromonospora based on morphological, biochemical, and 16S rRNA gene analysis and called Micromonospora sp. 2310. Extract isolate 2310 prepared from AM medium showed the best medium for antibacterial activities compared with the other media due to activity against 5 of 6 bacteria, namely Staphylococcus aureus ATCC 12600, Bacillus subtilis ATCC 6051, Salmonella enterica ATCC 14028, Escherichia coli ATCC 11775, Pseudomonas aeruginosa ATCC 9721 except Mycobacterium smegmatis ATCC 14468. Therefore, Micromonospora sp. 2310 could be considered a great potential antibacterial producer.
Enhancing the Quality of Patchouli Oil using Zeolite and Bentonite Nano-Particle Adsorbents Suraiya Kamaruzzaman; Syaifullah Muhammad; Sri Aprilia; Rahmat Alfano; Muhammad Ridha; Yanna Syamsuddin; Hesti Meilina
Jurnal Kimia Sains dan Aplikasi Vol 24, No 7 (2021): Volume 24 Issue 7 Year 2021
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (777.32 KB) | DOI: 10.14710/jksa.24.7.259-267

Abstract

The overall quality of patchouli oil is closely related to the purification process during manufacturing. This research provided an effective and efficient method for purifying Aceh patchouli oil to secure high-quality patchouli oil. Purification was done by utilizing natural mineral sources that were sufficiently available in Aceh and applying them in various adsorption processes, analyzing the adsorption of Fe levels in patchouli oil, and characterizing nano adsorbents used in the adsorption process. Nanoparticles of zeolite and bentonite were used during the adsorption process with patchouli oil sourced from the South Aceh area. The adsorption process purified 20 mL of patchouli oil at a temperature of 45 ℃ with variable mass nano adsorbent 1; 3; 5 g, and variable stirring time 60; 180; 300 minutes. The purification filtrate was later analyzed for patchouli alcohol levels using Gas Chromatography-Mass Spectrometry (GC-MS) and Fe levels using UV-Vis Spectrophotometry. The characterization of nano adsorbents was conducted using Scanning Electron Microscopy (SEM) and X-ray Diffractometry (XRD). The results showed that the most efficient adsorption process occurred in nano zeolite with a mass of 5 g and a stirring time of 300 minutes, where the patchouli alcohol content was 28.54%, Fe 0.8165 mg/kg. Meanwhile, nano zeolite’s most significant constituent components were silicon oxide (SiO2) of 48.9% and silicon carbide (CSi) of 31.3%. Visually the sample did not change color due to the low quality of patchouli oil, but the Fe level in the patchouli oil samples complied with SNI 06-2385-2006 with a maximum of 25 mg/kg. In addition, nano zeolite had an adsorption capacity of 0.96 mg/g with an adsorption efficiency of 98.49%.
Catalytic Cracking of Crude Biodiesel into Biohydrocarbon Using Natural Zeolite Impregnated Nickel Oxide Catalyst Isalmi Aziz; Edra Aditya Fhilipia Ardine; Nanda Saridewi; Lisa Adhani
Jurnal Kimia Sains dan Aplikasi Vol 24, No 7 (2021): Volume 24 Issue 7 Year 2021
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (508.975 KB) | DOI: 10.14710/jksa.24.7.222-227

Abstract

Crude biodiesel is biodiesel that still contains impurities. A catalytic can improve the quality of biohydrocarbons (biogasoline, biokerosene, and green diesel). The catalyst used is nickel oxide impregnated natural zeolite (NiO/Zeolite). The use of nickel can increase the activity of the catalyst because it has an empty d orbital and a smaller molecular size. This study aims to determine the best catalyst that can exhibit the greatest selectivity toward biohydrocarbons. Natural zeolite was activated and impregnated by varying the concentration of NiO (1, 3, and 5% w/w). The characteristics of the catalyst were determined by the crystallinity (X-Ray Diffraction), surface area (Surface Area Analyzer), and functional group (Fourier Transform Infrared). The catalyst and crude biodiesel were put in an autoclave reactor and operated at a temperature of 375°C and 3 hours. The obtained product was tested with Gas Chromatography-Mass Spectroscopy. The results of the XRD analysis showed the presence of NiO at 2θ 37.23; 43.15; and 62.65°. Nickel oxide on the catalyst was detected at a wavenumber of 671.23 cm‑1. The highest surface area was obtained at a NiO/Zeolite 1% of 49.4 m2/g. 1% NiO/Zeolite catalysts gave the best results on catalytic cracking of crude biodiesel with a reaction conversion of 60.79% and selectivity of 9,73%; 29,64% and 9,18% for biogasoline, biokerosene, and green diesel, respectively.
Synthesis of Dansyl Cyclen and Preliminary Study of Its Fluorescent Properties La Ode Kadidae; Ruslin Ruslin; Thamrin Azis; La Aba; Laode Abdul Kadir
Jurnal Kimia Sains dan Aplikasi Vol 25, No 2 (2022): Volume 25 Issue 2 Year 2022
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (831.263 KB) | DOI: 10.14710/jksa.25.2.63-70

Abstract

The synthesis of a dansyl cyclen-based compound as a potential chemical sensor has been carried out. The initial study of its fluorescent properties has also been conducted. This study aims to synthesize a cyclen-based compound comprising three identical pendant arms and another different arm carrying a dansyl fluorophore. Producing these heterogenous pendant arms, a-three pendant arm cyclen 9 was reacted with dansyl aziridine 10. The synthesis products were characterized using 1H NMR, 13C NMR, IR, and elemental analysis. In addition, a Fluorescent Spectrophotometer has been used to assess the fluorescent intensity changes of the synthetic ligand in a range of pH 2–13 and when it was titrated with some metal ions. Based on the results of characterization with 13C NMR for compound 2 and additional characterization with IR and elemental analysis for its hydrochloric form 11, it is wisely said that the proposed compound has been successfully synthesized, giving 66% yield as viscous brown oil 2. Moreover, the fluorescent property showed that the higher the pH employed, the higher the fluorescent intensity observed. Meanwhile, the addition of some cationic metals revealed that cadmium (II) gave the highest increase in the fluorescent intensities among other cationic metals.
Humic Acid-Modified Magnetite Nanoparticles for Removing [AuCl4]− in Aqueous Solutions Soerja Koesnarpadi Koesnarpadi; Nanang Tri Widodo; Acmad Maulana Maulana
Jurnal Kimia Sains dan Aplikasi Vol 25, No 1 (2022): Volume 25 Issue 1 Year 2022
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (952.581 KB) | DOI: 10.14710/jksa.25.1.27-33

Abstract

Humic acid-modified magnetite nanoparticle (MnP-HA) has been synthesized using the co-precipitation method and applied for removal of [AuCl4]−. Modifying of MnP-HA was prepared with the mass ratio of MnP-HA=10:1 and 10:3. The HA was extracted from peat soil of Sambutan Village, East Kalimantan, Indonesia, by the recommended procedure of the International Humic Substances Society (IHSS). The saturation magnetization of MnP-HA was decreased compared to unmodified MnP. The interaction between MnP and HA was occurred due to the chemical bond between Fe from MnP with the carboxylic group from HA. The coating HA on the surface of MnP unchanged the formation of the crystal structure of MnP and increased the particle size. The optimum removal of [AuCl4]− on MnP and MnP-HA materials was optimum at pH 3.0. The Langmuir isotherm model with sorption capacity was 0.23, 4.85, and 4.65 mol g–1 for MnP, MnP-HA=10:1, and 10:3, respectively. Using a pseudo-second-order equation, the degradation of the kinetics model of [AuCl4]− on MnP, MnP-HA=10:1 and 10:3 with adsorption rate constant (k) were 0.02, 0.07, and 0.06 g.mol min–1.
Degradation of Imidacloprid Residues on Unripe Tomatoes (Solanum lycopersicum) by AOPs and Its Analysis using Spectrophotometer and HPLC Trisna Olinovela; Hazanita Jumiaty; Safni Safni; Syukri Syukri
Jurnal Kimia Sains dan Aplikasi Vol 24, No 7 (2021): Volume 24 Issue 7 Year 2021
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (844.813 KB) | DOI: 10.14710/jksa.24.7.268-275

Abstract

Imidacloprid is an insecticide-active ingredient used by farmers to kill and control insects. Imidacloprid residue can be found in unripe tomatoes. Consuming unripe tomatoes contaminated with imidacloprid can cause human health problems such as cancer, chronic kidney disease, neurological disorders, and reproductive issues. In this study, imidacloprid pesticide residues on unripe tomatoes were degraded by the Advanced Oxidation Processes (AOPs) method, namely ozonolysis, sonolysis, and sonozolysis at various processing times (5, 10, 15, 20, and 25 minutes) in 50 g sample mass and 100 mL water volume. The changes in imidacloprid concentration before and after degradation were measured using a UV-Vis spectrophotometer and HPLC. The results of imidacloprid residue degradation by sonolysis was 66.99%, ozonolysis was 74.87%, and sonozolysis was 66.00%. The degradation kinetics of the imidacloprid residue was then studied. Kinetic study of all AOPs methods found that imidacloprid degradation followed a first-order kinetic model. The kinetics data showed that ozonolysis degradation is faster than sonolysis and sonozolysis, with a half-life (t1/2) of 16.90 minutes.
Effect of Dolomite Addition on Fly Ash Based Ceramic Membrane to Reduce COD and BOD of Liquid Waste Widiya Aprilianti; F. Widhi Mahatmanti; Mohammad Alauhdin; Jumaeri Jumaeri
Jurnal Kimia Sains dan Aplikasi Vol 24, No 7 (2021): Volume 24 Issue 7 Year 2021
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (562.375 KB) | DOI: 10.14710/jksa.24.7.228-235

Abstract

Ceramic membrane technology plays an essential role in separation fields such as wastewater treatment. Fly ash as a membrane material has proven to be very effective for many separation processes, including water and air purification, as well as industrial and environmental resource recovery. This study aims to develop a microfiltration ceramic membrane based on fly ash with the addition of dolomite. The synthesized ceramic membranes were then characterized using XRD, SEM, and TGA. Ceramic membranes are used to reduce COD and BOD levels in tofu industrial wastewater. The results showed that the value of membrane porosity tends to increase with the addition of dolomite 0% (D0) to 30% (D30). The increase in the porosity value in the membrane was followed by a decrease in the average pore size, namely 1.6994 m at D0 and 1.1730 m at D30. The membrane with 30% dolomite composition has the best mechanical properties with a compressive strength of 35.29 MPa and superior thermal resistance. This is very beneficial for the use of membranes in the long term. Meanwhile, the membrane filtration ability and the ability of the membrane to reduce COD and BOD levels of waste increased with the addition of dolomite from 0% to 30%. However, the decrease in COD and BOD was smaller in the membrane with 45% dolomite. D30 membrane can reduce COD 80% and BOD up to 71.44%. D30 membrane is the most effective fly ash and dolomite composition in forming pores on the membrane with the best COD and BOD reduction performance.
Catalytic hydrogenation of stearic acid to 1-octadecanol using supported bimetallic Pd–Sn(3.0)/γ–Al2O3 catalyst Atina Sabila Azzahra; Elisa Hayati; Rodiansono Rodiansono
Jurnal Kimia Sains dan Aplikasi Vol 25, No 2 (2022): Volume 25 Issue 2 Year 2022
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (701.986 KB) | DOI: 10.14710/jksa.25.2.71-78

Abstract

Supported bimetallic palladium-tin catalyst on gamma-alumina (γ-Al2O3) (denoted as Pd–Sn(3.0)/γ-Al2O3; Pd = 5%wt and Pd/Sn molar ratio is 3.0) has been synthesized via the hydrothermal method at a temperature of 423 K for 24 h and reduced with H2 at 673 K for 3 h. The XRD patterns of the samples showed typical diffraction peaks of support γ-Al2O3, metallic Pd, Sn, and Pd–Sn alloy phases. Diffraction peaks of metallic Pd were observed at 2θ = 39.8°; 46.6°; and 68.0°, which can be attributed to the Pd(111), Pd(200), and Pd(220), respectively, while the diffraction peaks at 2θ = 39.8° and 41.0° can be attributed to Pd2Sn and Pd3Sn2, respectively, which may overlap with the Pd(111) species. The ammonia desorption and pyridine adsorption profiles showed Lewis and Brönsted acid sites. The specific surface area (SBET) of Pd–Sn(3.0)/γ-Al2O3 catalyst was 117.83 m2/g which is dominated by a micropore structure. The highest conversion of stearic acid was 99.1% with a yield of 1-octadecanol 43.2% was obtained at temperature 513 K, initial H2 pressure of 2.0 MPa, a reaction time of 13 h, and in 2-propanol/water (4.0:1.0 v/v) solvent.
Kinetics of Formation and Characterization of Green Silver Nanoparticles of Ficus variegata Leaf Extract Synodalia C. Wattimena; Violin Ririmasse; Amos Killay; Philipus J. Patty
Jurnal Kimia Sains dan Aplikasi Vol 25, No 1 (2022): Volume 25 Issue 1 Year 2022
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (596.783 KB) | DOI: 10.14710/jksa.25.1.34-40

Abstract

This study aimed to determine the formation rate of silver nanoparticles synthesized using leaf extract of Ficus variegata and characterize their physical, chemical, and antibacterial properties against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. For the formation rate determination, an empirical exponential model was proposed and used to fit the absorbance vs. time data (kinetics data). The surface plasmon resonance wavelength was measured using UV-Vis spectroscopy for physical and chemical characterization. The shape and size of the silver nanoparticles were characterized by transmission electron microscopy (TEM), and organic materials on the surface of the particles were identified by characterizing the associated chemical bonding using FTIR spectroscopy. For antibacterial assays, disc diffusion and spectrophotometric methods were used. The formation rates of the silver nanoparticles were 0.036 per hour or 1.0 x 10-5 s-1 (slower rate) and 0.767 per hour or 2.1 x 10-4 s-1 (faster rate). UV-Vis absorption spectrum indicated the surface plasmon resonance peak at 415 nm. Silver nanoparticles formed mainly were spherical, with a mean diameter of 26.5±0.7 nm. The FTIR spectrum indicated the presence of organic materials on the surface of the silver nanoparticles, which indicated the involvement of the extract as a reducing agent in particles formation. Antibacterial assay showed that synthesized silver nanoparticles inhibited the growth of both S. aureus and E. coli. The results from the disc diffusion method imply that the particles inhibited the growth of E. coli more effectively than S. aureus.

Filter by Year

1998 2025


Filter By Issues
All Issue Vol 28, No 8 (2025): Volume 28 Issue 8 Year 2025 Vol 28, No 7 (2025): Volume 28 Issue 7 Year 2025 Vol 28, No 6 (2025): Volume 28 Issue 6 Year 2025 Vol 28, No 5 (2025): Volume 28 Issue 5 Year 2025 Vol 28, No 4 (2025): Volume 28 Issue 4 Year 2025 Vol 28, No 3 (2025): Volume 28 Issue 3 Year 2025 Vol 28, No 2 (2025): Volume 28 Issue 2 Year 2025 Vol 28, No 1 (2025): Volume 28 Issue 1 Year 2025 Vol 27, No 12 (2024): Volume 27 Issue 12 Year 2024 Vol 27, No 11 (2024): Volume 27 Issue 11 Year 2024 Vol 27, No 10 (2024): Volume 27 Issue 10 Year 2024 Vol 27, No 9 (2024): Volume 27 Issue 9 Year 2024 Vol 27, No 8 (2024): Volume 27 Issue 8 Year 2024 Vol 27, No 7 (2024): Volume 27 Issue 7 Year 2024 Vol 27, No 6 (2024): Volume 27 Issue 6 Year 2024 Vol 27, No 5 (2024): Volume 27 Issue 5 Year 2024 Vol 27, No 4 (2024): Volume 27 Issue 4 Year 2024 Vol 27, No 3 (2024): Volume 27 Issue 3 Year 2024 Vol 27, No 2 (2024): Volume 27 Issue 2 Year 2024 Vol 27, No 1 (2024): Volume 27 Issue 1 Year 2024 Vol 26, No 12 (2023): Volume 26 Issue 12 Year 2023 Vol 26, No 11 (2023): Volume 26 Issue 11 Year 2023 Vol 26, No 10 (2023): Volume 26 Issue 10 Year 2023 Vol 26, No 9 (2023): Volume 26 Issue 9 Year 2023 Vol 26, No 8 (2023): Volume 26 Issue 8 Year 2023 Vol 26, No 7 (2023): Volume 26 Issue 7 Year 2023 Vol 26, No 6 (2023): Volume 26 Issue 6 Year 2023 Vol 26, No 5 (2023): Volume 26 Issue 5 Year 2023 Vol 26, No 4 (2023): Volume 26 Issue 4 Year 2023 Vol 26, No 3 (2023): Volume 26 Issue 3 Year 2023 Vol 26, No 2 (2023): Volume 26 Issue 2 Year 2023 Vol 26, No 1 (2023): Volume 26 Issue 1 Year 2023 Vol 25, No 12 (2022): Volume 25 Issue 12 Year 2022 Vol 25, No 11 (2022): Volume 25 Issue 11 Year 2022 Vol 25, No 10 (2022): Volume 25 Issue 10 Year 2022 Vol 25, No 9 (2022): Volume 25 Issue 9 Year 2022 Vol 25, No 8 (2022): Volume 25 Issue 8 Year 2022 Vol 25, No 7 (2022): Volume 25 Issue 7 Year 2022 Vol 25, No 6 (2022): Volume 25 Issue 6 Year 2022 Vol 25, No 5 (2022): Volume 25 Issue 5 Year 2022 Vol 25, No 4 (2022): Volume 25 Issue 4 Year 2022 Vol 25, No 3 (2022): Volume 25 Issue 3 Year 2022 Vol 25, No 2 (2022): Volume 25 Issue 2 Year 2022 Vol 25, No 1 (2022): Volume 25 Issue 1 Year 2022 Vol 24, No 7 (2021): Volume 24 Issue 7 Year 2021 Vol 24, No 6 (2021): Volume 24 Issue 6 Year 2021 Vol 24, No 5 (2021): Volume 24 Issue 5 Year 2021 Vol 24, No 4 (2021): Volume 24 Issue 4 Year 2021 Vol 24, No 3 (2021): Volume 24 Issue 3 Year 2021 Vol 24, No 2 (2021): Volume 24 Issue 2 Year 2021 Vol 24, No 1 (2021): Volume 24 Issue 1 Year 2021 Vol 23, No 12 (2020): Volume 23 Issue 12 Year 2020 Vol 23, No 11 (2020): Volume 23 Issue 11 Year 2020 Vol 23, No 10 (2020): Volume 23 Issue 10 Year 2020 Vol 23, No 9 (2020): Volume 23 Issue 9 Year 2020 Vol 23, No 8 (2020): Volume 23 Issue 8 Year 2020 Vol 23, No 7 (2020): Volume 23 Issue 7 Year 2020 Vol 23, No 6 (2020): Volume 23 Issue 6 Year 2020 Vol 23, No 5 (2020): Volume 23 Issue 5 Year 2020 Vol 23, No 4 (2020): Volume 23 Issue 4 Year 2020 Vol 23, No 3 (2020): Volume 23 Issue 3 Year 2020 Vol 23, No 2 (2020): Volume 23 Issue 2 Year 2020 Vol 23, No 1 (2020): Volume 23 Issue 1 Year 2020 Vol 22, No 6 (2019): Volume 22 Issue 6 Year 2019 Vol 22, No 5 (2019): Volume 22 Issue 5 Year 2019 Vol 22, No 4 (2019): Volume 22 Issue 4 Year 2019 Vol 22, No 3 (2019): Volume 22 Issue 3 Year 2019 Vol 22, No 2 (2019): Volume 22 Issue 2 Year 2019 Vol 22, No 1 (2019): volume 22 Issue 1 Year 2019 Vol 21, No 4 (2018): volume 21 Issue 4 Year 2018 Vol 21, No 3 (2018): Volume 21 Issue 3 Year 2018 Vol 21, No 2 (2018): Volume 21 Issue 2 Year 2018 Vol 21, No 1 (2018): Volume 21 Issue 1 Year 2018 Vol 20, No 3 (2017): Volume 20 Issue 3 Year 2017 Vol 20, No 2 (2017): Volume 20 Issue 2 Year 2017 Vol 20, No 1 (2017): Volume 20 Issue 1 Year 2017 Vol 19, No 3 (2016): Volume 19 Issue 3 Year 2016 Vol 19, No 2 (2016): Volume 19 Issue 2 Year 2016 Vol 19, No 1 (2016): Volume 19 Issue 1 Year 2016 Vol 18, No 3 (2015): Volume 18 Issue 3 Year 2015 Vol 18, No 2 (2015): Volume 18 Issue 2 Year 2015 Vol 18, No 1 (2015): Volume 18 Issue 1 Year 2015 Vol 17, No 3 (2014): Volume 17 Issue 3 Year 2014 Vol 17, No 2 (2014): Volume 17 Issue 2 Year 2014 Vol 17, No 1 (2014): Volume 17 Issue 1 Year 2014 Vol 16, No 3 (2013): Volume 16 Issue 3 Year 2013 Vol 16, No 2 (2013): Volume 16 Issue 2 Year 2013 Vol 16, No 1 (2013): Volume 16 Issue 1 Year 2013 Vol 15, No 3 (2012): Volume 15 Issue 3 Year 2012 Vol 15, No 2 (2012): Volume 15 Issue 2 Year 2012 Vol 15, No 1 (2012): Volume 15 Issue 1 Year 2012 Vol 14, No 3 (2011): Volume 14 Issue 3 Year 2011 Vol 14, No 2 (2011): Volume 14 Issue 2 Year 2011 Vol 14, No 1 (2011): Volume 14 issue 1 Year 2011 Vol 13, No 3 (2010): Volume 13 Issue 3 Year 2010 Vol 13, No 2 (2010): Volume 13 Issue 2 Year 2010 Vol 13, No 1 (2010): Volume 13 Issue 1 Year 2010 Vol 12, No 3 (2009): Volume 12 Issue 3 Year 2009 Vol 12, No 2 (2009): Volume 12 Issue 2 Year 2009 Vol 12, No 1 (2009): Volume 12 Issue 1 Year 2009 Vol 11, No 3 (2008): Volume 11 Issue 3 Year 2008 Vol 11, No 2 (2008): Volume 11 Issue 2 Year 2008 Vol 11, No 1 (2008): Volume 11 Issue 1 Year 2008 Vol 10, No 3 (2007): Volume 10 Issue 3 Year 2007 Vol 10, No 2 (2007): Volume 10 Issue 2 Year 2007 Vol 10, No 1 (2007): Volume 10 Issue 1 Year 2007 Vol 9, No 3 (2006): Volume 9 Issue 3 Year 2006 Vol 9, No 2 (2006): Volume 9 Issue 2 Year 2006 Vol 9, No 1 (2006): Volume 9 Issue 1 Year 2006 Vol 8, No 3 (2005): Volume 8 Issue 3 Year 2005 Vol 8, No 2 (2005): Volume 8 Issue 2 Year 2005 Vol 8, No 1 (2005): Volume 8 Issue 1 Year 2005 Vol 7, No 3 (2004): Volume 7 Issue 3 Year 2004 Vol 7, No 2 (2004): Volume 7 Issue 2 Year 2004 Vol 7, No 1 (2004): Volume 7 Issue 1 Year 2004 Vol 6, No 3 (2003): Volume 6 Issue 3 Year 2003 Vol 6, No 2 (2003): Volume 6 Issue 2 Year 2003 Vol 6, No 1 (2003): Volume 6 Issue 1 Year 2003 Vol 5, No 3 (2002): Volume 5 Issue 3 Year 2002 Vol 5, No 2 (2002): Volume 5 Issue 2 Year 2002 Vol 5, No 1 (2002): Volume 5 Issue 1 Year 2002 Vol 3, No 3 (2000): Volume 3 Issue 3 Year 2000 Vol 3, No 2 (2000): Volume 3 Issue 2 Year 2000 Vol 3, No 1 (2000): Volume 3 Issue 1 Year 2000 Vol 2, No 4 (1999): Volume 2 Issue 4 Year 1999 Vol 2, No 3 (1999): Volume 2 Issue 3 Year 1999 Vol 2, No 2 (1999): Volume 2 Issue 2 Year 1999 Vol 2, No 1 (1999): Volume 2 Issue 1 Year 1999 Vol 1, No 1 (1998): Volume 1 Issue 1 Year 1998 More Issue