cover
Contact Name
Hairani
Contact Email
matrik@universitasbumigora.ac.id
Phone
+6285933083240
Journal Mail Official
matrik@universitasbumigora.ac.id
Editorial Address
Jl. Ismail Marzuki-Cilinaya-Cakranegara-Mataram 83127
Location
Kota mataram,
Nusa tenggara barat
INDONESIA
MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer
Published by Universitas Bumigora
ISSN : 18584144     EISSN : 24769843     DOI : 10.30812/matrik
Core Subject : Science,
MATRIK adalah salah satu Jurnal Ilmiah yang terdapat di Universitas Bumigora Mataram (eks STMIK Bumigora Mataram) yang dikelola dibawah Lembaga Penelitian dan Pengabadian kepada Masyarakat (LPPM). Jurnal ini bertujuan untuk memberikan wadah atau sarana publikasi bagi para dosen, peneliti dan praktisi baik di lingkungan internal maupun eksternal Universitas Bumigora Mataram. Jurnal MATRIK terbit 2 (dua) kali dalam 1 tahun pada periode Genap (Mei) dan Ganjil (Nopember).
Articles 418 Documents
Analisis Performa Open Shortest Path First Load Balancing dengan Metode Cost Manipulation Mochamad Wahyudi; Firmansyah Firmansyah
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 21 No. 3 (2022)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v21i3.1909

Abstract

Quality of Service (QoS) di dalam sebuah layanan jaringan menjadi faktor terpenting untuk memastikan kapasitas transfer paket data. Salah satunya pemilihan protokol routing yang akan digunakan. Routing Protokol Open Short Path First (OSPF) menggunakan metode Cost Manipulation mampu menjadi sebuah alternatif solusi untuk mamastikan QoS di dalam layanan jaringan dikarenakan metode Cost Manipulation mampu memilih jalan terbaik menuju network tujuan tanpa mempertimbangkan kembali metrik yang seharusnya, baik shortest path ke network tujuan ataupun bandwidth-nya. Hasil pengujian tracerroute sebelum pengimplementasian OSPF cost manipulation didapatkan hanya menggunakan 1 (satu) single line saja dan packet loss yang didapatkan saat terjadinya link failure dengan pengiriman 907 packet data adalah 1,4 packet loss. Sedangkan setelah pengimplementasi OSPF cost manipulation dapat menggunakan 2 (dua) dual line sebagai load balancing dan packet loss yang didapatkan menurun dengan hasil rata-rata sebesar 0,6 packet loss dan pengimplementasian cost manipulation mampu membagi transfer paket data dengan sama rata.
Tuberculosis Extra Pulmonary Bacilli Detection System Based on Ziehl Neelsen Images with Segmentation Bob Subhan Riza; Jufriadif Na'am; Sumijan Sumijan
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 22 No. 1 (2022)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v22i1.1939

Abstract

Tuberculosis Extra Pulmonary (TBEP) is one of the infectious diseases that can cause death. The bacterium Mycobacterium tuberculosis is the cause of this disease. Patients suffering from this disease must be treated quickly. Currently, patients need a long time and a large cost in detecting the bacteria that cause this disease. The technique used is to take the patient's lung fluid by biopsy and given Ziehl Neelsen chemical dye and then observed using a microscope. This study aims to help detect bacteria quickly and precisely by processing the image produced by the microscope. The technique used is to develop the segmentation method. The segmentation process carried out is to develop a Hue Saturation Value (HSV) color space transformation technique with Active Contour, Edge Detection, and Otsu techniques. The images used in this research are 51 images taken from H. Adam Malik Hospital, Medan and have been validated by an expert. Of the several segmentation methods used in this study, the maximum or best result in detecting Tuberculosis Extra Pulmonary (TBEP) bacilli is the Otsu method. So the method developed is very helpful in accelerating the detection of TBEP.
Model Dynamic Facility Location in Post-Disaster Areas in Uncertainty lili Tanti; Syahril Efendi; Maya Silvi Lydia; Herman Mawengkang
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 22 No. 1 (2022)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v22i1.2095

Abstract

Indonesia has many disaster-prone areas, natural disasters that occur in Indonesia in 2021 are 5,402 disasters. For disaster management in post-disaster areas, logistical planning is needed in the distribution of logistical assistance, it is estimated that the logistics costs of disaster assistance reach approximately 80% of the total costs in disaster management so that logistical assistance is an expensive activity of disaster relief. However, so far the process of distributing logistical assistance to disaster posts has not been evenly distributed. One of the causes of the unequal distribution is the inappropriate selection of distribution post locations. The facility location model is dynamic and has the objective function of minimizing the distance between emergency posts and refugee posts in terms of distribution of disaster relief goods in one cluster group. For grouping unsupervised learning data using a machine learning clustering algorithm, k-means. Model validation has been carried out using max run and max optimization 1000 times with results reaching 90%. This proves that the emergency facility location model can be used to determine the location of the emergency center, where the determination of the location of the emergency center has the closest distance to the request point/post shelter for disaster victims
Utilization of Data Mining on MSMEs using FP-Growth Algorithm for Menu Recommendations Firman Noor Hasan; Achmad Sufyan Aziz; Yos Nofendri
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 22 No. 2 (2023)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v22i2.2166

Abstract

Existing transaction data is only recorded and stored as a sales transaction memorandum, so it has not been utilized optimally. The data is only stored and used as transaction history. The availability of a lot of data and having a pattern of sales transactions that are similar to MSME Cafe Over Limit will be utilized by using data mining science. This research uses the association rules method. Implementation of fp-growth to get item combinations. The purpose of this research is to make it easier for MSMEs to determine menu recommendations for customers. The fp-growth algorithm is used to process as many as 2038 transaction data with a minimum support value of 10%, while for a minimum confidence value of 50%. So that there are 3 rules, namely "if you order Mariam chocolate cheese milk then the customer will order Kopsus Overlimit", from this rule it will form a support value of 10.79%, using a confidence value of 54.19% and a lift ratio of 0.93. Furthermore "if you order Kopsus Overlimit then you will order tofu at grandma's house", from the rule it will produce a support value of 34.69%, with a specified confidence value of 59.76%, so the lift ratio value is 1.15. The last rule "if you order tofu at grandma's house, the customer orders Kopsus Overlimit", from the rule that occurs, the support value is 34.69%, with a confidence value of 66.7% and a lift ratio of 1.15. The results of the study found the two best rules, namely "if the customer orders over-limit Kopsus, he will order tofu at grandma's house" and "if he orders tofu at grandma's house, the customer orders over-limit Kopsus". Based on the results of the rules formed, it can be concluded that only two rules can be categorized as valid and can be used as a reference in food and beverage menu recommendations at MSME Cafe Over Limit. So the results of this study can be useful to be applied to MSMEs, especially in terms of menu recommendations.
Automated University Lecture Schedule Generator based on Evolutionary Algorithm yusri ikhwani; Khairan Marzuki; As’ary Ramadhan
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 22 No. 1 (2022)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v22i1.2215

Abstract

university is a complicated work so in the implementation it have violation of the constraints and it also takes a lot of time since it is created manually. In this paper evolutionary algorithm (EA) is used to create an effective and feasible schedules based on the real data input that is obtained from each department. The objective functions in EA contribute in gaining the fitness function to solve the constraints problem in the schedule by applying weighting for each hard constraints. The objective function is gained from the total of infringement in each soft constraints addition by score weighting. The genetic operator used in EA is stochastic variation Operator. As far as the reproduction operator is concerned, the tournament selection was used with size 3. Crossover operator is conducted after selection process with crossover probability equal to 0.05 and mutation rate is 0.1. The size of population was set to 9 and stopping criteria algorithm was left run for fitness value = 1. The simulation result shows that EA can create lecture schedules efficiently and feasibly. Moreover, it is also faster with the execution time of the proposed EA is less than 30 and easier than creating manually.
Implementing K-Nearest Neighbor to Classify Wild Plant Leaf as a Medicinal Plants Zilvanhisna Emka Fitri; Lalitya Nindita Sahenda; Sulton Mubarok; Abdul Madjid; Arizal Mujibtamala Nanda Imron
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 23 No. 1 (2023)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i1.2220

Abstract

in leaf shape. Therefore, this study aimed to create a system to help increase public knowledge about wild plant leaves that also function as medicinal plants by the KNN method. Leaves of wild plants, namely Rumput Minjangan, Sambung Rambat, Rambusa, Brotowali, and Zehneria japonica, are also medicinal plants in comparison. Image processing techniques used were preprocessing, image segmentation, and morphological feature extraction. Preprocessing consists of scaling and splitting the RGB components and using an RGB component decomposition process to find the color component that best describes the leaf shape and generate the blue component image. The segmentation process used a thresholding technique with a gray threshold value (T) of less than 150, which best separates objects and backgrounds. Some morphological feature extraction used are area, perimeter, metric, eccentricity, and aspect ratio. Based on the results of this research, the KNN method with variations in K values, namely 13, 15, and 17, obtained a system accuracy of 94.44% with a total of 90% training data and 10% test data. This comparison also affected the increase in system accuracy.
Predicting Handling Covid-19 Opinion using Naive Bayes and TF-IDF for Polarity Detection Supangat Supangat; Mohd Zainuri Bin Saringat; Mochamad Yovi Fatchur Rochman
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 22 No. 2 (2023)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v22i2.2227

Abstract

There are many public responses about implementing government policies related to Covid-19. Some have positive and negative opinions, especially on the official social media portal of the government. Twitter is one social media where people are free to express their opinions. This study aims to find out the opinion of sentiment analysis on Twitter in implementing government policies related to Covid-19 to classify public opinion. Several stages in analyzing public sentiment are taken from the tweet data. The first step is data mining to get the tweets that will be analyzed later. Furthermore, cleaning tweet data and equalizing tweet data into lowercase. After that, perform the tweet's basic word search process and calculate its appearance frequency. Then calculate using the Naïve Bayes method and determine the sentiment classification of the tweet. The results showed that Indonesia's public sentiment about covid-19 prevention is neutral. The performance of the application shows an Accuracy value of 76.7%. In conclusion this means that the Indonesian government needs to evaluate the policies taken to deal with COVID-19 to create positive opinions to create solid cooperation between the government and the government. Residents in tackling the COVID-19 outbreak.
Comparison of Naive Bayes and Dempster Shafer Methods in Expert System for Early Diagnosis of COVID-19 Nurdin Nurdin; Erni Susanti; Hafizh Al-Kautsar Aidilof; Dadang Priyanto
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 22 No. 1 (2022)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v22i1.2280

Abstract

COVID-19 is a respiratory infection disease caused by the corona virus. Transmission of this virus can spread very quickly so that the number of cases of the corona virus continues to grow and becomes an epidemic that spreads not only in Indonesia but also in other countries in the world. The purpose of this study is to build an expert system that is able to diagnose Covid-19 early by using a comparison of the Nave Bayes method and the Dempster Shafer method. The amount of data used in this study is 550 data, consisting of 500 training data and 50 testing data. While the variables used are symptoms related to COVID-19 as many as 17 symptoms consisting of G01, G02, G03, G04, G05, G06, G07, G08, G09, G10, G11, G12, G13, G14, G15, G16, G17. The diagnostic data consists of Suspected (PDP), Non-Suspected, and Close Contact (ODP). The results of the percentage test by comparing system diagnoses with expert diagnoses, for the nave Bayes method it has an accuracy of 96% with 48 diagnoses according to expert diagnoses from 50 tested data. Meanwhile, the Dempster Shafer method has an accuracy of 40% with 20 diagnoses according to expert diagnoses from 50 tested data. Based on the results of this study, the Naive Bayes and Dempster Shafer methods can be applied to an expert system for early diagnosis of COVID-19, from the results of the system testing the Naive Bayes method has better accuracy than the Dempster Shafer method.
Google Trends and Technical Indicator based Machine Learning for Stock Market Prediction Mamluatul Hani'ah; Moch Zawaruddin Abdullah; Wilda Imama Sabilla; Syafaat Akbar; Dikky Rahmad Shafara
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 22 No. 2 (2023)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v22i2.2287

Abstract

The stock market often attracts investors to invest, but it is not uncommon for investors to experience losses when buying and selling shares. This causes investors to hesitate to determine when to sell or buy shares in the stock market. The accurate stock price prediction will help investors to decide when to buy or sell their shares. In this study, we propose a new approach to predicting stocks using machine learning with a combination of features from stock price features, technical indicators, and Google trends data. Three well-known machine learning algorithms such as Support Vector Regression (SVR), Multilayer Perceptron (MLP), and Multiple Linear regression are used to predict future stock prices. The test results show that the SVR outperformed the MLP and Multiple Linear Regression to predict stock prices for Indonesian stocks with an average MAPE is 0.50%. The SVR can predict the stock price close to the actual price.
The Application of Usability Testing to Analyze the Quality of Android-Based Acupressure Smart Chair Applications M. Khairul anam; Esi Tri Emerlada; Susi Erlinda; Tashid Tashid; Torkis Nasution
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 22 No. 2 (2023)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v22i2.2312

Abstract

A smart chair is a reflection smart chair that utilizes waste tires as an alternative to acupuncture. Smart chairs are designed for people who are phobic about acupuncture needles by replacing these needles with waste tires. Acupuncture smart chairs also make it easier for users without having to go to the acupuncture practice place. This smart chair is equipped with an application that is directly connected to android. The smart chair application is an android-based remote control where users can control the application remotely. However, this application has not been tested so it is not yet known how effective and efficient the use of the application is. Therefore, researchers would conduct testing by using the usability testing method. The usability testing method is a method carried out to measure the ease of the application that has been made. The analysis in this method used five evaluation components, namely learnability, efficiency, memorability, errors, and satisfaction. This research would make instruments based on usability testing and then distribute instruments to samples by using sampling techniques. The results of this study showed a variable learnability value was 65% while the efficiency variable got a value of 74%. In terms of memorability, its value was 59%, then the Errors variable value was 74%, and the last variable, namely satisfaction, reached a value of 74%.