cover
Contact Name
Mesran
Contact Email
mesran.skom.mkom@gmail.com
Phone
+6282161108110
Journal Mail Official
jurikom.stmikbd@gmail.com
Editorial Address
STMIK Budi Darma Jalan Sisingamangaraja No. 338 Simpang Limun Medan - Sumatera Utara
Location
Kota medan,
Sumatera utara
INDONESIA
JURIKOM (Jurnal Riset Komputer)
JURIKOM (Jurnal Riset Komputer) membahas ilmu dibidang Informatika, Sistem Informasi, Manajemen Informatika, DSS, AI, ES, Jaringan, sebagai wadah dalam menuangkan hasil penelitian baik secara konseptual maupun teknis yang berkaitan dengan Teknologi Informatika dan Komputer. Topik utama yang diterbitkan mencakup: 1. Teknik Informatika 2. Sistem Informasi 3. Sistem Pendukung Keputusan 4. Sistem Pakar 5. Kecerdasan Buatan 6. Manajemen Informasi 7. Data Mining 8. Big Data 9. Jaringan Komputer 10. Dan lain-lain (topik lainnya yang berhubungan dengan Teknologi Informati dan komputer)
Articles 998 Documents
Klasifikasi Penyakit Diabetes Menggunakan Pendekatan Pembelajaran Mesin dengan Model Non-linier Adi, Ilham Arif Kuncoro; Prabowo, Wahyu Aji Eko
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8586

Abstract

The increasing prevalence of diabetes mellitus highlights the need for accurate early detection methods. This study proposes a classification model for diabetes prediction using non-linear machine learning algorithms, namely Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbors (K-NN). The dataset, obtained from Kaggle, includes clinical features such as glucose levels, BMI, blood pressure, and insulin. The methodology comprises data preprocessing, partitioning the data into training and testing sets, and evaluating the model’s using accuracy, precision, recall, and F1-score. Experimental results indicate that the Random Forest algorithm achieved the highest performance, followed by SVM and K-NN. We attribute Random Forest’s superior performance to its robustness in handling complex patterns and minimizing overfitting. We expect this research to contribute to developing practical early detection tools for diabetes, thereby supporting timely and data-driven medical decision-making.
Pemanfaatan Model Linier dalam Klasifikasi Penyakit Diabetes Berbasis Machine Learning Ajisaputra, Faris Prasetya; Prabowo, Wahyu Aji Eko
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8587

Abstract

Diabetes is a chronic disease that may lead to serious health complications if not detected and treated early. Early detection plays a crucial role in minimizing long-term risks. This study aims to classify diabetes cases using a machine-learning approach based on linear models. The models applied in this research include logistic regression, linear discriminant analysis (LDA), ridge classifier, and support vector machine (SVM) with a linear kernel. We preprocessed the dataset to ensure quality and consistency. We evaluated each model’s performance using accuracy, precision, recall, F1-score, and AUC-ROC. Experimental results show that the ridge classifier achieved the highest performance, followed by LDA and linear SVM, with comparable results. Logistic regression also performed reasonably well, albeit with slightly lower metrics. These findings indicate that the linear model can provide accurate and reliable classification in the task of predicting diabetes, contributing to the proof that this model can serve as the basis for a decision support system for early diabetes diagnosis in the healthcare sector.
Optimasi Algoritma K-Nearest Neighbors pada Prediksi Penyakit Diabetes Arfiah, Sitti; Wajidi, Farid; Nur, Nahya
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8615

Abstract

Diabetes mellitus is a chronic disease characterized by high blood sugar levels due to metabolic system disturbances, specifically related to insulin production or effectiveness. If left untreated, it can lead to serious complications. Early and accurate detection is crucial for timely medical intervention. This research aimed to improve the accuracy of a diabetes classification system using the K-Nearest Neighbors (KNN) algorithm. An initial KNN model with imbalanced data (without SMOTE) and no GridSearchCV achieved only 83% accuracy. While seemingly good, its performance for the positive class was low (precision 80%, recall 69%, F1-score 74%), indicating bias towards the negative class due to data imbalance. To address this, several steps were implemented: data preprocessing (handling missing data and feature normalization), hyperparameter optimization using GridSearchCV, and data balancing with SMOTE. After these improvements, the KNN model showed significant performance gains, with accuracy reaching 94%. Performance for the positive class greatly improved (precision 90%, recall 98%, F1-score 94%), and for the negative class (precision 98%, recall 89%, F1-score 93%). These results demonstrate that combining preprocessing, model optimization, and class balancing effectively enhances the KNN algorithm's ability to detect diabetes more accurately and robustly, proving that machine learning with proper data processing can aid in developing medical decision support systems for early diabetes diagnosis.
Klasifikasi Kanker Payudara Berbasis Deep Learning Menggunakan Vision Transformer dengan Teknik Augmentasi Data Citra Ardiyansyah, Muhamad Salman; Umbara, Fajri Rakhmat; Melina, Melina
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8619

Abstract

Breast cancer ranks among the leading causes of death in women worldwide. Early detection through mammographic image analysis plays a crucial role in increasing survival rates. However, manual interpretation of mammograms requires expert knowledge and is prone to errors. This study aims to develop a breast cancer classification model using mammography images based on the Vision Transformer (ViT) architecture without employing transfer learning. The dataset used is the Digital Database for Screening Mammography (DDSM), consisting of two categories: benign and malignant. To address class imbalance, undersampling and data augmentation techniques (flipping, rotation, cropping, and noise injection) were applied. All images were normalized and resized to 224×224 pixels to match the ViT input requirements. The model was trained for five epochs with a batch size of 16. Evaluation on the test data was conducted using seven metrics: accuracy, precision, recall, F1-score, Matthews Correlation Coefficient (MCC), Cohen’s Kappa Score, and Area Under the Curve (AUC). The results show that the model achieved an accuracy of 92.50%, precision of 90.48%, recall of 95.00%, F1-score of 92.68%, MCC of 85.11%, Kappa Score of 85.00%, and AUC of 95.75%. These findings indicate that the Vision Transformer is highly effective for mammographic image classification and holds potential as a reliable tool for automated breast cancer diagnosis support.
Analisis Sentimen Komunitas Counter-Strike 2 (CS2) Menggunakan Support Vector Machine (SVM) Riyadi, Saiful Faris; Chrisnanto, Yulison Herry; Abdillah, Gunawan
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8620

Abstract

Counter-Strike 2 (CS2) is a game that has received a lot of enthusiasm from the gaming community since its release. User reviews on the Steam platform are the main source for understanding community sentiment towards this game. This study aims to analyze sentiment towards CS2 reviews using the Support Vector Machine (SVM) method. Data was collected through the Apify platform, then cleaned through processes such as tokenization, stopword removal, and lemmatization. Text features were converted into numerical values using Term Frequency-Inverse Document Frequency (TF-IDF) to be used in the SVM model. The SVM model was used to classify review sentiment into three categories: positive, neutral, and negative. Evaluation was conducted by measuring accuracy, confusion matrix, and classification reports. In the evaluation results, the SVM model using the One-vs-Rest (OVR) approach showed that the model without SMOTE produced an accuracy of 81.95%. After applying the Synthetic Minority Over-sampling (SMOTE) technique to the training data to balance the distribution between classes, the model accuracy increased slightly to 82.18%. This study provides valuable insights for game developers in understanding players' opinions about CS2. Additionally, this study demonstrates the potential of SVM in text-based sentiment analysis on user review platforms.
Fuzzy Tsukamoto Untuk Merekomendasikan Pembelian Barang Berdasarkan Data Penjualan Purba, Siti Aisyah; Sriani, Sriani
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8631

Abstract

The development of the sports industry, especially in futsal shoe sales, requires an inventory management strategy that is able to anticipate fluctuations in market demand. The main problem in this study is how to overcome the uncertainty of futsal shoe demand caused by variables such as trends, competition seasons, and changing consumer preferences. This study aims to develop a fuzzy logic-based purchase recommendation system using the Fuzzy Tsukamoto method to improve stock management efficiency. This study uses a quantitative approach with fuzzy method stages consisting of fuzzification, rule formation, inference, and defuzzification. The tools used are MATLAB software that supports the creation of fuzzy inference systems and graphic modeling. The study was conducted at the Pasifik Club Sports Sibolga Futsal Shoe Store by processing 1,098 historical sales data. The results of the study showed that the system built was able to recommend futsal shoe purchases with good accuracy, indicated by the Mean Absolute Percentage Error (MAPE) value of 15%. This system not only provides a popularity value for each shoe variant, but also helps stores avoid excess or shortage of stock. Thus, the Fuzzy Tsukamoto method is proven to be feasible to be used as a decision-making tool in retail inventory management.
Implementasi Model ARIMA untuk Peramalan Reorder Point dalam Supply Chain Management Alexandra, Andrea Cellista; Hartomo, Kristoko Dwi
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8639

Abstract

This research analyzes the patterns and trends of reorder points in inventory management over a two-year period (2023-2024), utilizing weekly time series data generated from daily data resampling. The ARIMA (Autoregressive Integrated Moving Average) method was applied to forecast future reorder point values. An Augmented Dickey-Fuller (ADF) stationarity test revealed that the initial data was non-stationary but became stationary after a single differencing operation. Parameter identification using Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots indicated that the ARIMA(1,1,1) model was the best choice, based on the lowest Akaike Information Criterion (AIC). Model accuracy was evaluated using Mean Absolute Percentage Error (MAPE), yielding a value of 0.02%, signifying an excellent level of prediction accuracy. Consequently, the ARIMA model is demonstrated to be reliable for forecasting reorder points, supporting more precise decision-making in inventory management.
Penerapan Convolutional Neural Network Dan DenseNet121 untuk Identifikasi Penyakit Daun Jagung Di Daerah Toba Hutapea, Oppir; Ford Lumban Gaol; Takuro Matsuo
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 4 (2025): Agustus 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i4.8646

Abstract

Corn is one of the most important agricultural commodities in the Toba region of North Sumatra. However, its productivity is often reduced due to foliar diseases that appear prior to harvest. The three most commonly observed leaf diseases include leaf spot, blight, and rust. To support early detection efforts among local farmers, this study proposes an image-based classification system employing the Convolutional Neural Network (CNN) algorithm and the DenseNet121 model as a transfer learning approach. The primary objective of this research is to automatically identify the type of disease affecting corn leaves using image data, thereby enabling farmers to promptly implement appropriate countermeasures. A series of experiments were conducted to evaluate various model configurations, including different activation functions (ReLU and Tanh), adjustments to learning rates, and the tuning of other hyperparameters such as optimizers and preprocessing methods (normalization, rotation augmentation, zooming, and contrast adjustments). The results demonstrate that DenseNet121, when trained with an optimal learning rate of 0.001, achieved the highest accuracy of 97%, outperforming the custom-built CNN model which attained an accuracy of 95%. The combination of effective preprocessing techniques and hyperparameter tuning significantly contributed to the improved performance of the models. This study highlights the potential of image-based plant disease detection technologies in agriculture, particularly in aiding real-time decision-making, enhancing land management efficiency, and supporting increased corn yield.
Prediksi Risiko Kesehatan Mental Mahasiswa Menggunakan Klasifikasi Naive Bayes Sumantri, Fithra Aditya; Chrisnanto, Yulison Herry; Melina, Melina
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8648

Abstract

The mental health of university students is a growing concern as academic, emotional, and social pressures contribute to increased psychological risks. This study aims to classify mental health risk levels Low, Medium, and High among students using the Naïve Bayes classification algorithm. A dataset consisting of 1,000 entries and 11 key variables was utilized, covering academic, psychological, and behavioral factors. The preprocessing stage included data cleaning, label encoding, normalization, and rule-based labeling to determine the target classes. Model training and testing were conducted using stratified data splitting to preserve class distribution. The initial model achieved a classification accuracy of 88,67%, with macro average F1-score of 0.87 and weighted average F1-score of 0.88. Grid Search optimization with k-fold cross-validation was applied but showed no significant improvement, indicating the model was already in optimal configuration. Furthermore, probabilistic analysis revealed that Sleep Quality and Study Stress Level were the most influential features in predicting mental health risks. The findings suggest that Naïve Bayes is effective for multi-class classification with interpretable results. This research contributes to early detection efforts and offers a foundation for targeted interventions in university mental health management.
Implementasi Metode Recurrent Neural Network Untuk Prediksi Kejang Pada Penderita Epilepsi Berdasarkan Data Electroenephalogram Febiyane, Raisya; Chrisnanto, Yulison Harry; Abdillah, Gunawan
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8656

Abstract

Epilepsy is a chronic neurological disorder that causes patients to experience recurrent seizures. Seizures are one of the main symptoms of epilepsy, requiring medical treatment and close monitoring. A major challenge in epilepsy management is the difficulty in predicting when seizures will occur. Electroencephalogram (EEG) can detect seizures as it contains physiological information about brain neural activity. This study aims to predict seizures using a Recurrent Neural Network (RNN) method based on EEG data. Deep Learning is a branch of Machine Learning that uses artificial neural networks to solve problems involving large datasets. The data used in this research is the Epileptic Seizure Recognition dataset obtained from Kaggle. It consists of patient ID attributes, 178 numerical attributes representing EEG signals, and a label y indicating conditions during the recording, including eyes open, eyes closed, healthy brain, tumor location, and seizure activity. The deep learning model tested is a Recurrent Neural Network (RNN) designed to learn patterns in the data. Performance evaluation was conducted using metrics including accuracy, precision, recall, and F1-Score. Based on the application of the RNN method and testing using EEG data, the best condition was achieved with a three-layer Long Short-Term Memory architecture and optimal training parameters, resulting in a seizure prediction accuracy of 98.6%. This result demonstrates that the model is capable of effectively and efficiently predicting the likelihood of seizure occurrences.

Page 96 of 100 | Total Record : 998


Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 12 No. 5 (2025): Oktober 2025 Vol. 12 No. 4 (2025): Agustus 2025 Vol 12, No 3 (2025): Juni 2025 Vol. 12 No. 3 (2025): Juni 2025 Vol 12, No 2 (2025): April 2025 Vol. 12 No. 2 (2025): April 2025 Vol. 12 No. 1 (2025): Februari 2025 Vol 12, No 1 (2025): Februari 2025 Vol 11, No 6 (2024): Desember 2024 Vol. 11 No. 6 (2024): Desember 2024 Vol 11, No 5 (2024): Oktober 2024 Vol. 11 No. 5 (2024): Oktober 2024 Vol 11, No 4 (2024): Augustus 2024 Vol. 11 No. 4 (2024): Augustus 2024 Vol. 11 No. 3 (2024): Juni 2024 Vol 11, No 3 (2024): Juni 2024 Vol 11, No 2 (2024): April 2024 Vol. 11 No. 2 (2024): April 2024 Vol 10, No 3 (2023): Juni 2023 Vol 10, No 2 (2023): April 2023 Vol 10, No 1 (2023): Februari 2023 Vol 9, No 6 (2022): Desember 2022 Vol 9, No 5 (2022): Oktober 2022 Vol 9, No 4 (2022): Agustus 2022 Vol 9, No 3 (2022): Juni 2022 Vol 9, No 2 (2022): April 2022 Vol 9, No 1 (2022): Februari 2022 Vol 8, No 6 (2021): Desember 2021 Vol 8, No 5 (2021): Oktober 2021 Vol 8, No 4 (2021): Agustus 2021 Vol 8, No 3 (2021): Juni 2021 Vol 8, No 2 (2021): April 2021 Vol 8, No 1 (2021): Februari 2021 Vol 7, No 6 (2020): Desember 2020 Vol 7, No 5 (2020): Oktober 2020 Vol. 7 No. 5 (2020): Oktober 2020 Vol 7, No 4 (2020): Agustus 2020 Vol 7, No 3 (2020): Juni 2020 Vol 7, No 2 (2020): April 2020 Vol 7, No 1 (2020): Februari 2020 Vol 6, No 6 (2019): Desember 2019 Vol 6, No 5 (2019): Oktober 2019 Vol 6, No 4 (2019): Agustus 2019 Vol 6, No 3 (2019): Juni 2019 Vol 6, No 2 (2019): April 2019 Vol 6, No 1 (2019): Februari 2019 Vol 5, No 6 (2018): Desember 2018 Vol 5, No 5 (2018): Oktober 2018 Vol 5, No 4 (2018): Agustus 2018 Vol 5, No 3 (2018): Juni 2018 Vol 5, No 2 (2018): April 2018 Vol 5, No 1 (2018): Februari 2018 Vol 4, No 5 (2017): Oktober 2017 Vol 4, No 4 (2017): Agustus 2017 Vol 3, No 6 (2016): Desember 2016 Vol 3, No 5 (2016): Oktober 2016 Vol 3, No 4 (2016): Agustus 2016 Vol 3, No 1 (2016): Februari 2016 Vol 2, No 6 (2015): Desember 2015 More Issue