cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 113 Documents
Search results for , issue "Vol 12, No 6: December 2022" : 113 Documents clear
Bridging the gap between the semantic web and big data: answering SPARQL queries over NoSQL databases Hakim El Massari; Sajida Mhammedi; Noreddine Gherabi
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6829-6835

Abstract

Nowadays, the database field has gotten much more diverse, and as a result, a variety of non-relational (NoSQL) databases have been created, including JSON-document databases and key-value stores, as well as extensible markup language (XML) and graph databases. Due to the emergence of a new generation of data services, some of the problems associated with big data have been resolved. In addition, in the haste to address the challenges of big data, NoSQL abandoned several core databases features that make them extremely efficient and functional, for instance the global view, which enables users to access data regardless of how it is logically structured or physically stored in its sources. In this article, we propose a method that allows us to query non-relational databases based on the ontology-based access data (OBDA) framework by delegating SPARQL protocol and resource description framework (RDF) query language (SPARQL) queries from ontology to the NoSQL database. We applied the method on a popular database called Couchbase and we discussed the result obtained.
Anomalies detection for smart-home energy forecasting using moving average Jesmeen Mohd Zebara Hoque; Gajula Ramana Murthy; Jakir Hossen; Jaya Ganesan; Azlan Abd Aziz; Chy. Mohammed Tawsif Khan
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp5808-5820

Abstract

In the past few years, the increase in the relation between the physical and digital world over the internet was witnessed. Even though the applications can enhance smart home systems, it is still early stages and challenges in the field of internet of things (IoT). An extreme level of data quality (DQ) system management is essential to produce a meaningful vision. However, in most home energy management system has no straightforward process of removing abnormal data. Hence, the research aims to propose and validate the model of anomaly detection for power consumption in real-time. The moving average (MA) approach identifies and removes abnormal energy consumption data. The results obtained from the forecasting time series auto regressive integrated moving average (ARIMA) model demonstrated that the proposed heuristics effectively enhanced energy usage forecasting. The selection of optimum parameter values for the MA was comprehended for time-series forecasting error minimization by comparing mean squared error (MSE). These outcomes proved the effectiveness of the existing technique and precision of choice of the appropriate. Therefore, the method can effectively route the cleaned sequence data streams in a real-time environment, which is valuable for spotting the anomalies and eliminating for enhancing energy usage time series.
Comparative study of optimization algorithms on convolutional network for autonomous driving Fernando Martinez; Holman Montiel; Fredy Martinez
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6363-6372

Abstract

he last 10 years have been the decade of autonomous vehicles. Advances in intelligent sensors and control schemes have shown the possibility of real applications. Deep learning, and in particular convolutional networks have become a fundamental tool in the solution of problems related to environment identification, path planning, vehicle behavior, and motion control. In this paper, we perform a comparative study of the most used optimization strategies on the convolutional architecture residual neural network (ResNet) for an autonomous driving problem as a previous step to the development of an intelligent sensor. This sensor, part of our research in reactive systems for autonomous vehicles, aims to become a system for direct mapping of sensory information to control actions from real-time images of the environment. The optimization techniques analyzed include stochastic gradient descent (SGD), adaptive gradient (Adagrad), adaptive learning rate (Adadelta), root mean square propagation (RMSProp), Adamax, adaptive moment estimation (Adam), nesterov-accelerated adaptive moment estimation (Nadam), and follow the regularized leader (Ftrl). The training of the deep model is evaluated in terms of convergence, accuracy, recall, and F1-score metrics. Preliminary results show a better performance of the deep network when using the SGD function as an optimizer, while the Ftrl function presents the poorest performances.
An optimal design of current conveyors using a hybrid-based metaheuristic algorithm Soufiane Abi; Bachir Benhala
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6653-6663

Abstract

This paper focuses on the optimal sizing of a positive second-generation current conveyor (CCII+), employing a hybrid algorithm named DE-ACO, which is derived from the combination of differential evolution (DE) and ant colony optimization (ACO) algorithms. The basic idea of this hybridization is to apply the DE algorithm for the ACO algorithm’s initialization stage. Benchmark test functions were used to evaluate the proposed algorithm’s performance regarding the quality of the optimal solution, robustness, and computation time. Furthermore, the DE-ACO has been applied to optimize the CCII+ performances. SPICE simulation is utilized to validate the achieved results, and a comparison with the standard DE and ACO algorithms is reported. The results highlight that DE-ACO outperforms both ACO and DE.
Optimization of the structure of filter-compensating devices in networks with powerful non-linear power consumers based on fuzzy logic Evgeniy Vitalievich Zhilin; Dmitriy Aleksandrovich Prasol; Nikita Yurievich Savvin
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp5730-5737

Abstract

The article presents a solution to the problem of optimizing the structure of filter-compensating devices (FCD) when installed in high-voltage mine networks with powerful nonlinear electrical receivers. The urgency of the problem of choosing a rational structure of the FCD. The problem of choosing the design and installation location of the FCD is presented. The main technical means of compensation of higher harmonics of currents and voltages in high-voltage networks with powerful nonlinear electrical receivers are considered. Analysis of different types of passive filters (PF) and their frequency properties showed that the choice of specific types of PF refers to the multi-criteria optimization problem. The main methods of optimization of FCD design are considered. The variant of FCD construction based on the solution of multi-criteria optimization problem with the use of fuzzy sets is proposed and justified. To this end, the calculation of PF parameters and frequency characteristics of equivalent systems of the "filter-external network" type for four possible combinations of PF is performed. The optimal is a FCD with two resonant PF tuned to the 11th and 13th harmonics, and a second-order broadband PF tuned to compensate harmonics starting from the 23rd and above. The analysis of simulation results showed effective compensation of higher harmonic currents and voltages.
Selective local binary pattern with convolutional neural network for facial expression recognition Syavira Tiara Zulkarnain; Nanik Suciati
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6724-6735

Abstract

Variation in images in terms of head pose and illumination is a challenge in facial expression recognition. This research presents a hybrid approach that combines the conventional and deep learning, to improve facial expression recognition performance and aims to solve the challenge. We propose a selective local binary pattern (SLBP) method to obtain a more stable image representation fed to the learning process in convolutional neural network (CNN). In the preprocessing stage, we use adaptive gamma transformation to reduce illumination variability. The proposed SLBP selects the discriminant features in facial images with head pose variation using the median-based standard deviation of local binary pattern images. We experimented on the Karolinska directed emotional faces (KDEF) dataset containing thousands of images with variations in head pose and illumination and Japanese female facial expression (JAFFE) dataset containing seven facial expressions of Japanese females’ frontal faces. The experiments show that the proposed method is superior compared to the other related approaches with an accuracy of 92.21% on KDEF dataset and 94.28% on JAFFE dataset.
Number of sources estimation using a hybrid algorithm for smart antenna Mohammed Hussein Miry; Atheer A. Sabri; Ali Hussien Mary
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6210-6217

Abstract

The number of sources estimation is one of the vital key technologies in smart antenna. The current paper adopts a new system that employs a hybrid algorithm of artificial bee colony (ABC) and complex generalized Hebbian (CGHA) neural network to Bayesian information criterion (BIC) technique, aiming to enhance the accuracy of number of sources estimation. The advantage of the new system is that no need to compute the covariance matrix, since its principal eigenvalues are computed using the CGHA neural network for the received signals. Moreover, the proposed system can optimize the training condition of the CGHA neural network, therefore it can overcome the random selection of initial weights and learning rate, which evades network oscillation and trapping into local solution. Simulation results of the offered system show good responses through reducing the required time to train the CGHA neural network, fast converge speed, effectiveness, in addition to achieving the correct number of sources.
Indonesian pharmacy retailer segmentation using recency frequency monetary-location model and ant K-means algorithm Ghea Sekar Palupi; Muhammad Noor Fakhruzzaman
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6132-6139

Abstract

We proposed an approach of retailer segmentation using a hybrid swarm intelligence algorithm and recency frequency monetary (RFM)-location model to develop a tailored marketing strategy for a pharmacy industry distribution company. We used sales data and plug it into MATLAB to implement ant clustering algorithm and K-means, then the results were analyzed using RFM-location model to calculate each clusters’ customer lifetime value (CLV). The algorithm generated 13 clusters of retailers based on provided data with a total of 1,138 retailers. Then, using RFM-location, some clusters were combined due to identical characteristics, the final clusters amounted to 8 clusters with unique characteristics. The findings can inform the decision-making process of the company, especially in prioritizing retailer segments and developing a tailored marketing strategy. We used a hybrid algorithm by leveraging the advantage of swarm intelligence and the power of K-means to cluster the retailers, then we further added value to the generated clusters by analyzing it using RFM-location model and CLV. However, location as a variable may not be relevant in smaller countries or developed countries, because the shipping cost may not be a problem.  
Natural language processing for Albanian: a state-of-the-art survey Muhamet Kastrati; Marenglen Biba
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6432-6439

Abstract

Due to its wide applicability, natural language processing (NLP) has attracted significant research efforts to the machine learning and deep learning research community. Despite this, research works investigating NLP for the Albanian language are still limited. However, to the best of our knowledge, there is no literature review available, which presents a clear picture of what has been studied, argued, and established in the area. The main objective of this survey is to comprehensively review, analyze and discuss the state-of-the-art in NLP for the Albanian language. Here, we present an extensive study concerning the contribution of several authors that have contributed to the application of NLP to the Albanian language. Also, we present an overview of research carried out in the typical applications of NLP for the Albanian language. Finally, some future challenges and limitations of the area are discussed.
Three-phase four-wire shunt hybrid active power filter model with model predictive control in imbalance distribution networks Asep Andang; Rukmi Sari Hartati; I Bagus Gede Manuaba; I Nyoman Satya Kumara
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp5923-5937

Abstract

This paper presents a harmonic reduction and load imbalance model in a three-phase four-wire distribution network. This model uses a hybrid active power filter, a passive inductor and capacitor filter, and an active power filter in the form of a three-phase, four-leg connected grid inverter. The switching of the voltage source converter on this filter uses finite control set model predictive control (FCS-MPC). Control of this hybrid active power filter uses model predictive control (MPC) with a cost function, comparing the reference current and prediction current with mathematical modelling of the circuit. The reference current is taken from the load current by extracting dq, and the predicted current is obtained from the iteration of the voltage source converter (VSC) switching pattern. Each combination is compared with the reference current in the cost function to get the smallest error used as a power switching signal. Modelling was validated by using MATLAB Simulink. The simulation results prove a decrease in harmonics at a balanced load from 22.16% to 4.2% and at an unbalanced load, reducing the average harmonics to 4.74%. The simulation also decreases the load current imbalance in the distribution network. Reducing the current in the neutral wire from 62.01%-0.42% and 11.29-0.3 A.

Page 7 of 12 | Total Record : 113


Filter by Year

2022 2022


Filter By Issues
All Issue Vol 16, No 1: February 2026 Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue