International Journal of Power Electronics and Drive Systems (IJPEDS)
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Articles
60 Documents
Search results for
, issue
"Vol 12, No 3: September 2021"
:
60 Documents
clear
A comprehensive review of distributed power system architecture for telecom and datacenter applications
Ramesh B. Darla;
Chitra A
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1535-1555
With the dominating utility of the internet, it becomes critical to manage the efficiency and reliability of telecom and datacenter, as the power consumption of the involved equipment also increases. Much power being wasted through the power conversion stages by converting AC voltage to DC voltage and then stepping down to lower voltages to connect to information and communication technology (ICT) equipment. 48/12 VDC is the standard DC bus architecture to serve the end utility equipment. This voltage level is further processed to multiple lower voltages to power up the internal auxiliary circuits. Power losses are involved when it is converted from higher voltage to lower voltages. Therefore, the efficiency of power conversion is lower. There is a need to increase the efficiency by minimizing the power losses which occur due to the conversion stages. Different methods are available to increase the efficiency of a system by optimizing the converter topologies, semiconductor materials and control methods. There is another possibility of increasing the efficiency by changing the architecture of a system by increasing the DC bus voltage to higher voltages to optimize the losses. This paper presents a review of available high voltage options for telecom power distribution and developments, implementations and challenges across the world.
Stator flux in direct torque control using a speed and torque variation-based sector rotation approach
Siti Azura Ahmad Tarusan;
Auzani Jidin;
Mohd Luqman Mohd Jamil;
Kasrul Abdul Karim
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1326-1334
A typical problem of traditional DTCs is that the stator flux fails to regulate at low running speeds. The regulation of stator flux in DTC is disrupted because of the unavoidable voltage drop across the stator resistance. As a result, one of the solutions to the problem is to use a fixed sector rotation technique. The concept is based on decreasing stator flux droop, a simple technique for changing the flux locus sector at a certain angle. This method, however, is only effective at low working speeds at one value of torque. As a result, the stator flux droop effect at various speeds as well as torque must be studied. The study is carried out in this paper using simulation (MATLAB/Simulink) and a practical setup (dSPACE board) where both have performed similar outcomes. The comparison is done between the conventional method (without a strategy) and the proposed method (with strategy). In summary, the effect of stator flux droop has been found to have an inverse linear relationship to the speed and torque variation.
Using Y-source network as a connector between turbine and network in the structure of variable speed wind turbine
Zadehbagheri, Mahmoud;
Sutikno, Tole;
Ildarabadi, Rahim
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1644-1658
Environmental factors such as air pollution and increase in global warming by using polluting fuels are the most important reasons of using renewable and clean energy that runs in global community. Wind energy is one of the most suitable and widely used kind of renewable energy which had been in consideration so well. This paper introduces an electric power generation system of wind based on Y-source and improved Y-source inverter to deliver optimal electrical power to the network. This new converter is from impedance source converters family. This presented converter has more degrees of freedom to adjust voltage gain and modulation. Also, by limiting the range of simultaneous control (shooting through) while it maintains the highest power of maximizer, it can operate in higher modulation range. This causes the reduce of stress in switching and thus it will improve the quality of output. Recommended system had been simulated in MATLAB/Simulink and shown results indicate accurate functionality.
Real time implementation of anti-windup PI controller for speed control of induction machine based on DTC strategy
Lahcen Ouboubker;
Jawad Lamterkati;
Mohamed Khafallah;
Aziz El Afia
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1358-1368
This paper presents simulation and experimental results of anti-windup PI controller to improve induction machine speed control based on direct torque control (DTC) strategy. Problems like rollover can arise in conventional PI controller due to saturation effect. In order to avoid such problems anti-windup PI controller is presented. This controller is simple for implementation in practice. The proposed anti-windup PI controller demonstrates better dynamic step changes response in speed in terms of overshoots. All simulation work was done using Simulink in the MATLAB software. The experimental results were obtained by practical implementation on a dSPACE 1104 board for a 1.5 KW induction machine. Simulation and experimental results have proven a good performance and verified the validity of the presented control strategy.
Two-level inverter and three-level neutral point diode clamped inverter for traction applications: a comparative analysis study
Asmaa A. Abdelsalam;
Mohamed Adel Esmaeel;
Salama Abo Zaid
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1609-1619
This paper presents an analytical comparison between two-level inverter and three-level neutral point diode clamped inverters for electric vehicle traction purposes. The main objective of the research is to declare the main differences in the performance of the two inverter schemes in terms of the switching and conduction losses over an entire domain of the modulation index and the phase angle distribution, steady-state operation, transient operation at a wide range of speed variation, and the total harmonic distortion THD% of the line voltage output waveform. It also declares the analysis of the three-level neutral point diode clamped inverter (NPCI) obstacle and the unbalance of the DC-link capacitor voltages. The introduced scheme presents an Induction Motor (IM) drive for electric vehicle (EV) applications. Considering the dynamic operation of the EV, the speed of the three-phase induction motor is controlled using a scalar V/Hz control for the full range of the IM power factor (PF). A comprehensive MATLAB/Simulink model for the proposed scheme is established.
Adaptive backstepping controller design based on neural network for PMSM speed control
E. Sabouni;
B. Merah;
I. K. Bousserhane
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1940-1952
The aim of this research is the speed tracking of the permanent magnet synchronous motor (PMSM) using an intelligent Neural-Network based adapative backstepping control. First, the model of PMSM in the Park synchronous frame is derived. Then, the PMSM speed regulation is investigated using the classical method utilizing the field oriented control theory. Thereafter, a robust nonlinear controller employing an adaptive backstepping strategy is investigated in order to achieve a good performance tracking objective under motor parameters changing and external load torque application. In the final step, a neural network estimator is integrated with the adaptive controller to estimate the motor parameters values and the load disturbance value for enhancing the effectiveness of the adaptive backstepping controller. The robsutness of the presented control algorithm is demonstrated using simulation tests. The obtained results clearly demonstrate that the presented NN-adaptive control algorithm can provide good trackingperformances for the speed trackingin the presence of motor parameter variation and load application.
Modelling and simulation of driving cycle using simulink
S. K. Arun;
I. N. Anida;
J. S. Norbakyah;
A. R. Salisa
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1450-1458
Driving cycle is commonly known as the relationship and a series of speed-time profile. The study on this discipline aids vehicle manufacturers in vehicle construction, environmentalists in studying environment quality in proportion with vehicle emissions and traffic engineers to further investigate the behaviour of drivers and the road conditions which assist automotive industry in a better and energy efficient vehicle productions. In order to develop a proper driving cycle for selected routes, information and data based on real-time driving behaviour is important. This research focusses on the modelling of each component and latter designing a conceptual model in Simulink which takes up the data of speed of vehicles in SI unit which is m/s and draws out distance travelled and acceleration of the vehicle together with driving cycle of the route for given timestamp. This relation will be verified with existing Kuala Terengganu BasKITe driving cycle, highway fuel economy test (HWFET), new europian driving cycle (NEDC) and worldwide harmonised light vehicle test procedure (WLTP) driving cycles for the use of future projects and improvements of technology in studies and analysis of powertrain and electric vehicle performances.
Active cooling photovoltaic with IoT facility
Muhammad Nizam Kamarudin;
Sahazati Md. Rozali;
Mohd Saifuzam Jamri
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1494-1504
Harvesting energy from the sun makes the photovoltaic (PV) power generation a promising technology. To obtain a consistent state of charge (SOC), consistent energy must be harvested and efficiently directed to the battery. Overcharging or undercharging phenomena decreases the lifetime of the battery. Besides, the effect of irradiance toward solar in term of sunlight intensity effects the efficiency and hence, sluggish the SOC. The main problem of the solar panel revealed when the temperature has increased, the efficiency of solar panel will also be decreased. This manuscript reports the finding of developing an automatic active cooling system for a solar panel with a real time energy monitoring system with internet-of-things (IoT) facility. The IoT technology assists user to measure the efficiency of the solar panel and SOC of the battery in real time from any locations. The automatic active cooling system is designed to improve the efficiency of the solar panel. The effectiveness of the proposed system is proven via the analysis of the effect of active cooling toward efficiency and SOC of photovoltaic system. The results also tabulate the comparative studies of active-to-passive cooling system, as well as the effect of cooling towards SOC and efficiency of the solar panel.
Prospect of renewable energy resources in Bangladesh
Mohammad Mafizur Rahman;
Feroza Begum
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1804-1812
The objective of this paper is to provide an overview of the current state of renewable energy resources in Bangladesh, as well as to examine various forms of renewable energies in order to gain a comprehensive understanding of how to address Bangladesh's power crisis issues in a sustainable manner. Electricity is currently the most useful kind of energy in Bangladesh. It has a substantial influence on a country's socioeconomic standing and living standards. Maintaining a stable source of energy at a cost that is affordable to everyone has been a constant battle for decades. Bangladesh is blessed with a wealth of natural resources. Bangladesh has a huge opportunity to accelerate its economic development while increasing energy access, livelihoods, and health for millions of people in a sustainable way due to the renewable energy system.
Active battery balancing system for electric vehicles based on cell charger
Amin, Amin;
Budiman, Alexander Christantho;
Kaleg, Sunarto;
Sudirja, Sudirja;
Hapid, Abdul
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1729-1737
Cell imbalance can cause negative effects such as early stopping of the battery charging and discharging process which can reduce its capacity. In the previous active balancing research, the energy used for the balancing process was taken from the cell or battery pack, resulting in drop of electric vehicle driving range. In this paper, a cell charger based battery balancing system is proposed with a reduction in the number of switches. The use of a cell charger aims to increase the usable energy of the battery pack, since the energy used for the balancing process is taken directly from the grid. The use of fewer switches aims to reduce the cost and space used on the battery management system (BMS) hardware. The charger used for the balancing process has a maximum current of 3 A and a maximum voltage of 3.65 V while the number of switches used is n+5 for n batteries. A 15S1P 200 Ah LiFePO4 battery pack consists of 15 cells used for testing purpose. The test results show that the time needed to equalize the 15 cell battery voltage reaches 6 hours from the difference between the highest and lowest battery cell voltages of 145.1 mV to 15.1 mV.