cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Power Electronics and Drive Systems (IJPEDS)
ISSN : -     EISSN : 20888694     DOI : -
Core Subject : Engineering,
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Arjuna Subject : -
Articles 2,594 Documents
Permanent magnet generator performance comparison under different topologies and capacities Wirtayasa, Ketut; Kasim, Muhammad; Widiyanto, Puji; Muqorobin, Anwar; Wijanarko, Sulistyo; Irasari, Pudji
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1516-1527

Abstract

This paper compares the magnetic, electrical, and mechanical characteristics of two permanent magnet generator topologies: single-gap axial flux and single-gap inner rotor radial flux. The study aims to identify how the key parameters fluctuate at each power capacity and investigate the trends in their values as power changes. The power capacities observed are 300 W, 600 W, 900 W, 1200 W, and 1500 W. Simulations used with the help of Ansys Maxwell software to obtain: i) magnetic characteristics without load, including air gap flux density, flux linkage, and induced voltage, ii) electrical performance, consisting of armature current, terminal voltage, voltage regulation, total harmonic distortion, core loss and output power, and iii) mechanical performance, including shaft torque and cogging torque. The last step compares the power density of both topologies. The simulation results show that the axial flux permanent magnet generator (AFPMG) has better air gap flux density, voltage regulation, total harmonic distortion (THD), efficiency, electromagnetic torque, and power density characteristics. Meanwhile, the radial flux permanent magnet generator (RFPMG) is superior in induced voltage and output power. These results conclude that, in general, AFPMG is exceptional from a technical point of view and is more economical when applied to hydro or wind energy systems.
Improved hybrid DTC technology for eCAR 4-wheels drive Eric, Njock Batake Emmanuel; Maurice, Nyobe Yome Jean; Pierre, Ngoma Jean; Max, Ndoumbé Matéké
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1566-1585

Abstract

This article deals with the design of a hybrid controller (HyC). It combines fuzzy logic (FL), adaptive neuro-fuzzy inference system (ANFIS). It is combined with direct torque control (DTC). This HyC-DTC combination is designed to improve the technical performance of a 04-wheel drive electric vehicle (EV). A stress test is identically applied to the DTC combined with the FL (FDTC) and to the HyC-DTC in order to certify the suitability of this new control following a cross-validation. This is based on dynamic stability criteria (overshoot, rise time, accuracy), analysis of torque and flux oscillations, and the EV's robustness symbol. The EV's magnetic quantities are managed by a master-slave module (VMSC). Simulations are carried out using MATLAB/Simulink software. The HyC-DTC achieves near-zero accuracy like the FDTC, with overshoot around 0.2% less than the FDTC, and torque oscillation amplitude around 4 times less than the FDTC. However, its rise time is 0.045% greater than that of the FDTC. It is therefore slower, but more precise and suitable for EV transmission systems in terms of safety and comfort.
Islanding detection of integrated DG system using rate of change of frequency over reactive power Kumari, B. V. Seshu; Prasad, Ambati Giri; Srilakshmi, S. Sai; Buchireddy, Karri Sairamakrishna; Reddy, Ch. Rami
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1637-1644

Abstract

This paper offers a passive islanding detection method that is effective for distributed generation. When a distributed generator (DG) keeps a location powered even when access to the external electrical grid is lost, this circumstance is referred to as islanding. The power distribution system currently includes distributed generators (DGs), which provide inexpensive electricity and have fewer environmental impacts. Sometimes, these DGs continue to supply the nearby loads because of line outages and islands made by system separations. As a result, there are scenarios with unacceptable power quality. The islanding is identified if the result of the rate of change of frequency over reactive power exceeds the threshold value. The MATLAB test results from this study demonstrate the effectiveness of the suggested approach for different islanding and non-islanding scenarios.
Bibliometric visualization of metal-air battery research trends Pinandita, Satria; Asnawi, Rustam; Syamsiro, Mochamad
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1865-1880

Abstract

Metal-air batteries are rechargeable secondary batteries with high energy density, typically using carbon electrodes. However, carbon waste poses environmental risks. Fly ash, a byproduct of coal combustion, offers a sustainable alternative due to its high electrical conductivity. This study analyzes research trends on metal-air batteries and fly ash from 2019 to 2023 using bibliometric visualization of Scopus-indexed publications. The keyword search was refined from 'Battery' to 'Air Battery' and, finally, 'Air Battery' with 'Fly Ash,' yielding 60 relevant articles. Using the VOSviewer, research patterns, key focus areas, and collaboration networks were identified. The results indicate a 14.87% increase in publications from 2019 to 2023, with significant growth from 2019 to 2021 before declining after 2022. This fluctuation suggests shift in research interests toward other battery technologies. Fly ash demonstrates potential as a carbon substitute for air batteries, promoting sustainability. However, further research is needed to optimize its application and address technical challenges. Bibliometric visualization highlights a growing interest in fly ash for environmentally friendly battery development due to its abundance and sustainability.
Solar cell-based garden light automation for environmentally friendly technology learning Mayub, Afrizal; Fahmizal, Fahmizal; Lazfihma, Lazfihma
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1457-1471

Abstract

This research aims to: 1) Produce a prototype design for a solar cell-based automatic garden lighting system; 2) Determine the relationship between current, power, and voltage and light intensity; 3) Describe the feasibility of an environmentally friendly technology practicum guidebook; and 4) Describe teacher and student responses to the environmentally friendly technology practice guidebook. This research is R&D type Analysis, Design, Development, Implementation and Evaluation (ADDIE) Analysis, design, development, implementation and evaluation. The research sample used 44 class IX students at MTS Rahmatullah. According to students, aspects of teaching materials, aspects of content, and difficulty of teaching materials at school are inadequate at 84.25%, 80% and 82.5%. Student interest in environmentally friendly technology practicum guidebooks was 84.25%. The higher the light intensity, the higher the current, power, and voltage. Expert validation shows; the prototype of an automatic garden lighting system based on solar cells and a practical guidebook on environmentally friendly technology are very suitable for use (89.14% and 90.75%). The use of environmentally friendly technology practicum guidebooks increased students' critical thinking skills in the high category (N-Gain = 0.7937) and received responses from teachers and students in the "almost all" category (91.50% and 89.9%).
Study of parallel operation single phase H-bridge CSI and H-bridge VSI Suroso, Suroso; Winasis, Winasis; Supriyanti, Retno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1721-1730

Abstract

In some applications, parallel operation of some single-phase inverters with different characteristics is a necessity, such as in a photovoltaic power conversion system. Each power inverter with its power source works, delivering power to a common load which cannot be supplied by a single power inverter. This paper proposed a novel parallel operation of two different power inverter circuit types. H-bridge voltage source inverter (HB VSI) and H-bridge current source inverter (HB-CSI), supplying AC power to a common load. The proposed inverter system was examined and its operation characteristics were analyzed using computer simulation. Moreover, a laboratory prototype of the inverter system was made and examined to validate some principal characteristics of the inverter system experimentally. Test results showed that by combining the HB-VSI and HB CSI, a lower distortion of load current was achieved, specifically, total harmonic distortion (THD) of Iload was less than 1%. This phenomenon happens even the THD of AC currents generated by HB-VSI and HB-CSI at 6.95% and 6.18%, respectively.
Wireless charging Class-E inverter for zero-voltage switching over coupling coefficient range Namin, Anon; Donloei, Chuchat; Chaidee, Ekkachai
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1752-1764

Abstract

A novel and practical methodology is presented in this study for designing contactless wireless energy systems using resonant-mode Class-E converters, aiming to sustain efficient soft-transition switching under various levels of magnetic coupling, even under coil misalignment. The approach integrates the wireless power transfer (WPT) circuit with the inverter’s series resonant network and analytically derives the relationship between the coupling coefficient and impedance phase angle to identify zero voltage switching (ZVS) conditions. A key contribution is the use of the maximum expected coupling coefficient as a critical design point to ensure ZVS across practical variations. A complete step-by-step design procedure is provided. Simulation and experimental results confirm that the inverter achieves and maintains ZVS for coupling values in the range 0 < k ≤ kdesigned, with efficiencies reaching up to 95%. This work supports the advancement of soft-switching inverter design to enable robust and efficient WPT systems under practical misalignment conditions.
An analytical technique for failure analysis and reliability assessment of grid daily outage performance in distributed power system Ogunjuyigbe, Jacob Kehinde; Ashigwuike, Evans Chinemezu; Adeyemi, Kafayat; Ngang, Ngang Bassey; Araoye, Timothy Oluwaseun; Onuh, Isaac Ojochogwu; Adole, Benson Stephen; Okoh, Solomon Bala; Endurance, Iboi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1852-1864

Abstract

This paper modeled and analyzed the reliability performance of the 132/33 kV substation in Abuja, Nigeria through the historical data collected from the APO substation using MATLAB 2021b. The probability distribution model was applied to determine the daily feeder’s outage using Reliability, availability, mean time to repair (MTR), Failure rate, distribution indices, and mean time between failures (MTBF). Due to the application of smart energy meters, the use of prepaid energy meters has helped to regulate energy demand, reduce network overloading especially during peak hours, and minimize the cost of energy consumed. There are more forced failures in the distribution system due to the switchgear and Transformer failures. There are more forced failures in the distribution system since 2013, which caused a reduction in the number of interruptions even with an increase in several customers linked to the transmission network. The result shows that the system was most available in the year 2015 with an average service availability index (ASAI) value of 98.9971%. The system was least available in year 2011 with an ASAI value of 98.6558%. The paper recommended that there should be interconnections between different feeders through proper configuration of switches or reclosers, to reduce failure occurrence in the network.
Intelligent control solutions for enhancing dual-fold Luo converter efficiency in EVs Subramanian, P. Siva; Marisekar, B.; Karthiga, P. Mohana; Ramya, R.
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1789-1800

Abstract

This research proposes the design and application of a smart controller for a dual-fold Luo converter tailored specifically for E-vehicle applications. The dual-fold Luo converter, known for its ability to efficiently step up and step down voltage levels with reduced components, is augmented with a smart control strategy to enhance its performance in the context of electric vehicles. The smart controller utilizes advanced techniques, such as artificial neural networks or fuzzy logic, to adaptively regulate the converter's operation, thereby improving efficiency, transient response, and overall reliability. By leveraging real-time data from the E-vehicle system, the controller dynamically adjusts key parameters to optimize performance under varying load and operating conditions. Key design considerations include the selection and training of the smart controller to achieve desired voltage regulation, efficiency, and robustness in the face of uncertainties inherent in E-vehicle operation. The proposed design methodology is validated through simulation studies, demonstrating superior performance compared to conventional control techniques. The results illustrate the efficacy of the smart controller in enhancing the dynamic response of the dual-fold Luo converter, making it a promising solution for E-vehicle power management systems. This research contributes to the advancement of power electronics in electric transportation, facilitating the development of more efficient and reliable E-vehicle systems in the pursuit of sustainable mobility.
Enhancement of power quality of grid integrated photo voltaic system using active power filter Kamat, Praveen; Naik, Anant
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp2017-2029

Abstract

The world's population's energy needs are growing daily, while at the same time, fossil fuels are being reduced at an alarming rate. Fossil fuel burning also increases pollution and causes global warming. Renewable energies are now being extensively used to generate electricity, so the dependence on fossil fuels is considerably reduced. Among the primary sources of alternative energy used to create power is photovoltaic (PV) technology. A grid connected PV system is the most widely recommended. When PV is linked to the grid, two main issues are the maximum power that can be taken out of it and the quality of the electricity placed into it. With the help of neural networks, the maximum power point tracking (MPPT) technology has been developed to increase the PV array's power harvesting. An active power filter (APF) had been created and analyzed using Instantaneous Reactive Power Theory, including the Chebyshev II low-pass filter. As required by IEEE 519, the total harmonic distortion (THD) with injected source current has been confirmed well within 5%. These results demonstrate that this method is a simple and efficient way to inject harmonic-free currents into the grid.

Filter by Year

2011 2025


Filter By Issues
All Issue Vol 16, No 4: December 2025 Vol 16, No 3: September 2025 Vol 16, No 2: June 2025 Vol 16, No 1: March 2025 Vol 15, No 4: December 2024 Vol 15, No 3: September 2024 Vol 15, No 2: June 2024 Vol 15, No 1: March 2024 Vol 14, No 4: December 2023 Vol 14, No 3: September 2023 Vol 14, No 2: June 2023 Vol 14, No 1: March 2023 Vol 13, No 4: December 2022 Vol 13, No 3: September 2022 Vol 13, No 2: June 2022 Vol 13, No 1: March 2022 Vol 12, No 4: December 2021 Vol 12, No 3: September 2021 Vol 12, No 2: June 2021 Vol 12, No 1: March 2021 Vol 11, No 4: December 2020 Vol 11, No 3: September 2020 Vol 11, No 2: June 2020 Vol 11, No 1: March 2020 Vol 10, No 4: December 2019 Vol 10, No 3: September 2019 Vol 10, No 2: June 2019 Vol 10, No 1: March 2019 Vol 9, No 4: December 2018 Vol 9, No 3: September 2018 Vol 9, No 2: June 2018 Vol 9, No 1: March 2018 Vol 8, No 4: December 2017 Vol 8, No 3: September 2017 Vol 8, No 2: June 2017 Vol 8, No 1: March 2017 Vol 7, No 4: December 2016 Vol 7, No 3: September 2016 Vol 7, No 2: June 2016 Vol 7, No 1: March 2016 Vol 6, No 4: December 2015 Vol 6, No 3: September 2015 Vol 6, No 2: June 2015 Vol 6, No 1: March 2015 Vol 5, No 4: 2015 Vol 5, No 3: 2015 Vol 5, No 2: 2014 Vol 5, No 1: 2014 Vol 4, No 4: December 2014 Vol 4, No 3: September 2014 Vol 4, No 2: June 2014 Vol 4, No 1: March 2014 Vol 3, No 4: December 2013 Vol 3, No 3: September 2013 Vol 3, No 2: June 2013 Vol 3, No 1: March 2013 Vol 2, No 4: December 2012 Vol 2, No 3: September 2012 Vol 2, No 2: June 2012 Vol 2, No 1: March 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue