cover
Contact Name
Tae Jin Park
Contact Email
iaes.ijra@gmail.com
Phone
-
Journal Mail Official
iaes.ijra@gmail.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Robotics and Automation (IJRA)
ISSN : 20894856     EISSN : 27222586     DOI : -
Core Subject : Engineering,
Robots are becoming part of people's everyday social lives and will increasingly become so. In future years, robots may become caretaker assistants for the elderly, or academic tutors for our children, or medical assistants, day care assistants, or psychological counselors. Robots may become our co-workers in factories and offices, or maids in our homes. The IAES International Journal of Robotics and Automation (IJRA) is providing a platform to researchers, scientists, engineers and practitioners throughout the world to publish the latest achievement, future challenges and exciting applications of intelligent and autonomous robots. IJRA is aiming to push the frontier of robotics into a new dimension, in which motion and intelligence play equally important roles. Its scope includes (but not limited) to the following: automation control, automation engineering, autonomous robots, biotechnology and robotics, emergence of the thinking machine, forward kinematics, household robots and automation, inverse kinematics, Jacobian and singularities, methods for teaching robots, nanotechnology and robotics (nanobots), orientation matrices, robot controller, robot structure and workspace, robotic and automation software development, robotic exploration, robotic surgery, robotic surgical procedures, robotic welding, robotics applications, robotics programming, robotics technologies, robots society and ethics, software and hardware designing for robots, spatial transformations, trajectory generation, unmanned (robotic) vehicles, etc.
Articles 470 Documents
Real-time microreaction recognition system Wu, Yi-Chang; Liu, Yao-Cheng; Huang, Ru-Yi
IAES International Journal of Robotics and Automation (IJRA) Vol 12, No 2: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v12i2.pp157-166

Abstract

This study constructed a real-time microreaction recognition system that can give real-time assistance to investigators. Test results indicated that the number of frames per second (30 or 190); angle of the camera, namely the front view of the interviewee or left (+45°) or right (−45°) view; and image resolution (480 or 680 p) did not have major effects on the system’s recognition ability. However, when the camera was placed at a distance of 300 cm, recognition did not always succeed. Value changes were larger when the camera was placed at an elevation 45° than when it was placed directly in front of the person being interrogated. Within a specific distance, the recognition results of the proposed real-time microreaction recognition system concurred with the six reaction case videos. In practice, only the distance and height of the camera must be adjusted in the real-time microreaction recognition system.
Combining optimization and dynamic movement primitives for planning energy optimal forestry crane motions La Hera, Pedro; Morales, Daniel Ortíz; Mendoza-Trejo, Omar
IAES International Journal of Robotics and Automation (IJRA) Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v13i2.pp180-193

Abstract

Forestry cranes are an important tool for safe and efficient timber harvesting with forestry machines. However, their complex manual control often led to inefficiencies and excessive energy usage, due to the many joysticks and buttons that must be used in a precise sequence to perform efficient movements. To address this, the industry is increasingly turning to partial automation, making manual control more intuitive for the operator and, consequently, achieving improvements in energy efficiency. This article introduces a novel approach to energy-optimal motion planning that can be used along with a feedback control system to automate crane motions, taking over portions of the operator’s work. Our method combines dynamic movement primitives (DMPs) and an energy-optimization algorithm. DMPs is a machine learning technique for motion planning based on human demonstrations, while the optimization algorithm exploits the crane’s redundancy to find energy-optimal trajectories. Simulation results show that DMPs can replicate human-like controlled motions with a 25% reduction in energy consumption. However, our energy optimization algorithm shows improvements of over 40%, providing substantial energy savings and a promising pathway towards environmentally friendly partially automated machines.
Smart factory for future industry development Rahman, Atiqur; Arthur, Seleman Daudi
IAES International Journal of Robotics and Automation (IJRA) Vol 12, No 2: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v12i2.pp192-196

Abstract

The paradigm of the smart factory is thought of as an innovative outline for the fourth industrial revolt. The GLOVA G7-DR20U is set as a programmable logic controller (PLC) for monitoring the performance of the smart factory while using the NodeMCU-V3 esp8266 as the internet of things (IoT) board for interaction between managers and the factory using the personal digital assistant (PDA) programming that has been written in the RabitMQ platform. The program logged inner PLC by applying ladder language for monitoring the performance of PLC. With the completion of intelligent PLC, it is likely to extend the existing making capability in the factory with simplicity. This work joins a PLC used as a parent control unit, apps, user programs, and human-machine interface, with the Internet. The proposed model of the smart factory holds two motors one for the parallel drive and the other for the upright drive. While running the system, we observe that the proposal is working correctly, and the reply to the interaction method via IoT is excellent.
Position control of AX-12 servo motor using proportional-integral-derivative controller with particle swarm optimization for robotic manipulator application Al Tahtawi, Adnan Rafi; Putri, Fina Sonia; Martin, Martin
IAES International Journal of Robotics and Automation (IJRA) Vol 12, No 2: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v12i2.pp184-191

Abstract

This study proposes a control method for servo motor position using a proportional-integral-derivative (PID) controller with particle swarm optimization (PSO). We use an AX-12 servo motor that is commonly used for robotic manipulator applications. The angular position of the servo motor will be controlled using the PID control method with PSO as a controller gain optimizer. Firstly, the transfer function model of the servo motor is generated using open-loop model identification. Then, the integral error of the closed-loop system is used as PSO input in producing PID controller gain. As an objective function of the PSO algorithm, the integral time absolute error (ITAE) index performance is used. The proposed controller was tested and compared with PID with the Ziegler-Nichols (ZN) method. We also conduct the hardware experiment using Arduino Uno as a microcontroller using one AX-12 servo motor on the base joint of the manipulator robot. Based on the simulation result, the PID-PSO controller can achieve the best control response performance if compared to PID-ZN with a rise time is less than 0.5 s, a settling time of fewer than 8 s, and an overshoot under 1.2%. The effectiveness of the proposed PID-PSO controller is also validated by hardware experimental results.
Fault tolerance of a quadrotor via feedback linearization approach Jebelli, Ali; Najafiyanfar, Alireza; Mahabadi, Arezoo; E. Yagoub, Mustapha C.
IAES International Journal of Robotics and Automation (IJRA) Vol 12, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v12i3.pp228-239

Abstract

A control algorithm is proposed to efficiently control the state, position, and height of a nonlinear dynamic model of a quadcopter. Based on feedback linearization, a state space model is presented for the system with the controller with a two-loop control structure designed and implemented in it. The inner and faster controller is responsible for adjusting the quadcopter height and angles, and the outer and slower controller is responsible for changing the desired figures of roll and pitch angles to control the system position. Whenever a rotor of the quadcopter rotor fails, the status and position of the system are converged and the system is stabilized. Simulation results based on different scenarios indicate the proper performance of the control system whenever there are external disturbances. Note that the gyroscopic effects because of the propeller rotation were not considered.
Application of a mathematical model for the Motoman MH-50 industrial robot’s electric drive system Vladimirovich Litsin, Konstantin; Rakhmanov, Rakhmetolla; Vitalievich Tsukanov, Andrey
IAES International Journal of Robotics and Automation (IJRA) Vol 12, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v12i3.pp221-227

Abstract

In recent years, there has been a great interest in the transition to digital and automation services for dangerous and menial working processes. Due to its MH50-35 industrial robot, Motoman's properties allow us to improve the control system of an electric drive for industrial robots. The structure of the electric drive for six-axis robot manipulator performance can be superior to conventional Drive Control servos for motor excitation, and a novel automation system can be implemented for its servo performance. To solve these issues, we propose an optimization strategy that allows us to achieve an increase in productivity and labor safety in the industry, reduce the percentage of defects, guarantee product uniformity, and reduce the prime cost of production of items. Ideal conditions were anticipated using a mathematical model. In this study, by using a statistical model, the ideal conditions were synthesized. The optimization of the control system of an electric drive for industrial robot analysis was carried out, and our findings suggest using this model in industrial production to elucidate problems such as high accuracy and speed indicators.
Water level control of small-scale recirculating aquaculture system with protein skimmer using fuzzy logic controller Mulyanto, Mulyanto; Suprapty, Bedi; Gaffar, Achmad Fanany Onnilita; Sumadi, Muhammad Taufiq
IAES International Journal of Robotics and Automation (IJRA) Vol 12, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v12i3.pp300-314

Abstract

The recirculating aquaculture system (RAS) is a land-based aquaculture facility, either open-air or indoors, that minimizes water consumption by filtering, adapting, and reusing water. Solid organic matter from fish waste and food waste directly becomes waste that needs to be eliminated because it is a source of increasing total ammonia nitrogen (TAN), total suspended solids (TSS), total dissolved solids (TDS), and also has an impact on reducing dissolved oxygen (DO). RAS requires a water level control system so the fish tank does not experience water shortages or floods, disrupting the aquatic aquaculture ecosystem. In this study, small-scale RAS is modeled using a 3-coupled tanks system approach with a tank configuration that follows the most straightforward RAS water recirculation process (fish tank, mechanic filter, biofilter). Clean water from the reservoir flows into the fish tank through a protein skimmer. This study applies the fuzzy logic controller (FLC) to control the water level in the protein skimmer and biofilter tanks by controlling the position of several valves where the placement positions of the valves have been determined according to system requirements. The study results show that the tuned single-input FLC has the best average output response characteristics with ts=50, h1ss=49.98, ess=0.02 in protein skimmer and ts=4700, h1ss=39.75, ess=0.25 in the tank system.
Fuzzy-proportional-integral-derivative hybrid controller design for ultra-high temperature milk processing Ahmad, Naseer; Arsalan, Muhammad
IAES International Journal of Robotics and Automation (IJRA) Vol 12, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v12i3.pp289-299

Abstract

In the ultra-high temperature (UHT) process, fluid temperature is raised above 135 °C for a short period of time (typically 4 seconds) and then quickly cooled ensuring no microbes remain in the final product. To have better quality processed milk, a stringent temperature control system is necessary. To solve this problem a detailed control-oriented mathematical model of the heating system for UHT application is developed and a detailed block diagram is established by identifying various systems and signals. To draw the merits of a feedforward controller (transfer function or fuzzy logic based) and proportional-integral-derivative (PID) feedback compensator, a fuzzy PID hybrid controller is designed and simulated in a MATLAB environment. Findings of the simulation results indicate that the fuzzy-PID hybrid compensator concatenates the benefits of both controllers. PID controller processes the error signal and tracks the setpoint whereas the feedforward controller (transfer function or fuzzy) effectively rejects the disturbance signal’s effect on the controlled variable. The fuzzy-PID hybrid controller performs better than the individual PID or fuzzy controller.
Vector-logic computing for faults-as-address deductive simulation Gharibi, Wajeb; Hahanov, Vladimir; Chumachenko, Svetlana; Litvinova, Eugenia; Hahanov, Ivan; Hahanova, Irina
IAES International Journal of Robotics and Automation (IJRA) Vol 12, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v12i3.pp274-288

Abstract

The aim of the research is to create logic-free vector computing, leveraging read-write transactions in memory, to solve the problems of modeling and simulation stuck-at-fault combinations for complex logic elements and digital structures. At the same time, the problem of creating smart data structures based on logical vectors, truth tables, and deductive matrices is considered to simplify algorithms for parallel stuck-at-fault simulation. Vector computing is a computational process based on read-write transactions on bits of a binary vector of functionality, where the input data and faults are the addresses of the bits. A method for the synthesis of deductive vectors for propagating input fault lists is proposed, which has a quadratic computational complexity of read-write transactions. Deductive vectors, combined into a quadratic matrix, represent explicit data structures for parallel simulation of single and multiple stuck-at-faults. The initial information for constructing a deductive matrix is a logical vector and a bit-recoding matrix. Matrix is easily obtained using a recursive procedure based on the combinatorial properties of the truth table. Considering emerging trends, focused on in-memory computing, an algorithm for fault, as addresses, simulation is proposed, using logical and deductive vectors placed in memory. The simulation algorithm is proposed not to use commands of powerful processors.
CURe-Mi mobile manipulator robot for contact-less COVID-19 patients serving missions Rokhim, Ismail; Ramadhan, Nur Jamiludin; Najakh, Zainun
IAES International Journal of Robotics and Automation (IJRA) Vol 12, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v12i3.pp262-273

Abstract

Since March 2020, coronavirus disease (COVID-19) has become a major global concern. Even in an emergency, medical personnel should avoid contact with COVID-19 patients. Mobile manipulators are a non-contact alternative to medical personnel for performing healthcare tasks such as distributing supplies to COVID-19-quarantined patients. In this study, patients use an Android application to order mobile manipulator robots, which include the Collaborative Manipulator Robot UR5e and the autonomous mobile robot MiR200 (abbreviated and referred to as CURe-Mi). The HTTP protocol is used for communication between the Android application and the robot. The experiment was conducted in a small room with several tables and bottles used to simulate hospital rooms and medications. The delivery testing results show that all four items were delivered successfully. The results of the manipulator robot and mobile robot movement accuracy tests show that the average error is 0.213 and 4.51 cm, respectively. The Android application performance test demonstrates that the application successfully sends commands to the mobile manipulator robot within its maximum range of 1,800 cm. The CURe-Mi mobile manipulator robot has successfully assisted medical personnel in handling several contactless COVID-19 patients serving missions.

Filter by Year

2012 2025