cover
Contact Name
Imam Much Ibnu Subroto
Contact Email
imam@unissula.ac.id
Phone
-
Journal Mail Official
ijai@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN : 20894872     EISSN : 22528938     DOI : -
IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like genetic algorithm, ant colony optimization, etc); reasoning and evolution; intelligence applications; computer vision and speech understanding; multimedia and cognitive informatics, data mining and machine learning tools, heuristic and AI planning strategies and tools, computational theories of learning; technology and computing (like particle swarm optimization); intelligent system architectures; knowledge representation; bioinformatics; natural language processing; multiagent systems; etc.
Arjuna Subject : -
Articles 1,722 Documents
Breast cancer prediction model with decision tree and adaptive boosting Tsehay Admassu Assegie; R. Lakshmi Tulasi; N. Komal Kumar
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i1.pp184-190

Abstract

In this study, breast cancer prediction model is proposed with decision tree and adaptive boosting (Adboost). Furthermore, an extensive experimental evaluation of the predictive performance of the proposed model is conducted. The study is conducted on breast cancer dataset collected form the kaggle data repository. The dataset consists of 569 observations of which the 212 or 37.25% are benign or breast cancer negative and 62.74% are malignant or breast cancer positive. The class distribution shows that, the dataset is highly imbalanced and a learning algorithm such as decision tree is biased to the benign observation and results in poor performance on predicting the malignant observation. To improve the performance of the decision tree on the malignant observation, boosting algorithm namely, the adaptive boosting is employed. Finally, the predictive performance of the decision tree and adaptive boosting is analyzed. The analysis on predictive performance of the model on the kaggle breast cancer data repository shows that, adaptive boosting has 92.53% accuracy and the accuracy of decision tree is 88.80%, Overall, the adaboost algorithm performed better than decision tree.
Enhancing the performance of cancer text classification model based on cancer hallmarks Noha Ali; Ahmed H. AbuEl-Atta; Hala H. Zayed
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp316-323

Abstract

Deep learning (DL) algorithms achieved state-of-the-art performance in computer vision, speech recognition, and natural language processing (NLP). In this paper, we enhance the convolutional neural network (CNN) algorithm to classify cancer articles according to cancer hallmarks. The model implements a recent word embedding technique in the embedding layer. This technique uses the concept of distributed phrase representation and multi-word phrases embedding. The proposed model enhances the performance of the existing model used for biomedical text classification. The result of the proposed model overcomes the previous model by achieving an F-score equal to 83.87% using an unsupervised technique that trained on PubMed abstracts called PMC vectors (PMCVec) embedding. Also, we made another experiment on the same dataset using the recurrent neural network (RNN) algorithm with two different word embeddings Google news and PMCVec which achieving F-score equal to 74.9% and 76.26%, respectively.
Deep ensemble learning for skin lesions classification with convolutional neural network Renny Amalia Pratiwi; Siti Nurmaini; Dian Palupi Rini; Muhammad Naufal Rachmatullah; Annisa Darmawahyuni
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp563-570

Abstract

One type of skin cancer that is considered a malignant tumor is melanoma. Such a dangerous disease can cause a lot of death in the world. The early detection of skin lesions becomes an important task in the diagnosis of skin cancer. Recently, a machine learning paradigm emerged known as deep learning (DL) utilized for skin lesions classification. However, in some previous studies by using seven class images diagnostic of skin lesions classification based on a single DL approach with CNNs architecture does not produce a satisfying performance. The DL approach allows the development of a medical image analysis system for improving performance, such as the deep convolutional neural networks (DCNNs) method. In this study, we propose an ensemble learning approach that combines three DCNNs architectures such as Inception V3, Inception ResNet V2 and DenseNet 201 for improving the performance in terms of accuracy, sensitivity, specificity, precision, and F1-score. Seven classes of dermoscopy image categories of skin lesions are utilized with 10015 dermoscopy images from well-known the HAM10000 dataset. The proposed model produces good classification performance with 97.23% accuracy, 90.12% sensitivity, 97.73% specificity, 82.01% precision, and 85.01% F1-Score. This method gives promising results in classifying skin lesions for cancer diagnosis.
A compact deep learning model for Khmer handwritten text recognition Bayram Annanurov; Norliza Mohd Noor
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp584-591

Abstract

The motivation of this study is to develop a compact offline recognition model for Khmer handwritten text that would be successfully applied under limited access to high-performance computational hardware. Such a task aims to ease the ad-hoc digitization of vast handwritten archives in many spheres. Data collected for previous experiments were used in this work. The oneagainst-all classification was completed with state-of-the-art techniques. A compact deep learning model (2+1CNN), with two convolutional layers and one fully connected layer, was proposed. The recognition rate came out to be within 93-98%. The compact model is performed on par with the state-of-theart models. It was discovered that computational capacity requirements usually associated with deep learning can be alleviated, therefore allowing applications under limited computational power.
A framework to shape the recommender system features based on participatory design and artificial intelligence approaches Tajul Rosli Razak; Mohammad Hafiz Ismail; Shukor Sanim Mohd Fauzi; Ray Adderley JM Gining; Ruhaila Maskat
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp727-734

Abstract

A recommender system is an algorithm aiming at giving suggestions to users on relevant elements or items such as products to purchase, books to read, jobs to apply or anything else depending on industries or situations. Recently, there has been a surge in interest in developing a recommender system in a variety of areas. One of the most widely used approaches in recommender systems is collaborative filtering (CF). The CF is a strategy for automatically creating a filter based on a user's needs by extracting desires or recommendation information from a large number of users. The CF approach uses multiple correlation steps to do this. However, the occurrence of uncertainty in finding the best similarity measure is unavoidable. This paper outlines a method for improving the configuration of a recommender system that is tasked with recommending an appropriate study field and supervisor to a group of final-year project students. The framework we suggest is built on a participatory design methodology that allows students' individual opinions to be factored into the recommender system's design. The architecture of the recommender scheme was also illustrated using a real-world scenario, namely mapping the students' field of interest to a possible supervisor for the final year project.
Prediction of the effects of environmental factors towards COVID-19 outbreak using AI-based models Khalid Mahmoud; Hatice Bebiş; A. G. Usman; A. N. Salihu; M. S. Gaya; Umar Farouk Dalhat; R. A. Abdulkadir; M. B. Jibril; S. I. Abba
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i1.pp35-42

Abstract

The need for elucidating the effects of environmental factors in the determination of the novel corona virus (COVID-19) is very vital. This study is a methodological study to compare three different test models (1. Artificial neural networks (ANN), 2. Adaptive neuro fuzzy inference system (ANFIS), 3. A linear classical model (MLR)) used to determine the relationship between COVID-19 spread and environmental factors (temperature, humidity and wind). These data were obtained from the studies (Pirouz, Haghshenas, Haghshenas, & Piro, 2020) with confirmed COVID-19 patients in Wuhan, China, using temperature, humidity and wind as the independent variables. The measured and the predicted results were checked based on three different performance indices; Root mean square error (RMSE), determination coefficient (R2) and correlation coefficient (R). The results showed that ANFIS and ANN are more promising over the classical MLR models having an average R-values of 0.90 in both calibration and verification stages. The findings indicated that ANFIS outperformed MLR and ANN. In addition, their performance skills boosted up to 25% and 9% respectively based on the determination coefficient for the prediction of confirmed COVID-19 cases in Wuhan city of China. Overall, the results depict the reliability and ability of AI-based models (ANFIS and ANN) for the simulation of COVID-19 using the effects of various environmental variables. 
Generalized swarm intelligence algorithms with domain-specific heuristics P. Matrenin; V. Myasnichenko; N. Sdobnyakov; D. Sokolov; S. Fidanova; L. Kirilov; R. Mikhov
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i1.pp157-165

Abstract

In recent years, hybrid approaches on population-based algorithms are more often applied in industrial settings. In this paper, we present the approach of a combination of universal, problem-free Swarm Intelligence (SI) algorithms with simple deterministic domain-specific heuristic algorithms. The approach focuses on improving efficiency by sharing the advantages of domain-specific heuristic and swarm algorithms. A heuristic algorithm helps take into account the specifics of the problem and effectively translate the positions of agents (particle, ant, bee) into the problem's solution. And a Swarm algorithm provides an increase in the adaptability and efficiency of the approach due to stochastic and self-organized properties. We demonstrate this approach on two non-trivial optimization tasks: scheduling problem and finding the minimum distance between 3D isomers.
Effective preprocessing based neural machine translation for English to Telugu cross-language information retrieval B. N. V. Narasimha Raju; M. S. V. S. Bhadri Raju; K. V. V. Satyanarayana
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp306-315

Abstract

In cross-language information retrieval (CLIR), the neural machine translation (NMT) plays a vital role. CLIR retrieves the information written in a language which is different from the user's query language. In CLIR, the main concern is to translate the user query from the source language to the target language. NMT is useful for translating the data from one language to another. NMT has better accuracy for different languages like English to German and so-on. In this paper, NMT has applied for translating English to Indian languages, especially for Telugu. Besides NMT, an effort is also made to improve accuracy by applying effective preprocessing mechanism. The role of effective preprocessing in improving accuracy will be less but countable. Machine translation (MT) is a data-driven approach where parallel corpus will act as input in MT. NMT requires a massive amount of parallel corpus for performing the translation. Building an English - Telugu parallel corpus is costly because they are resource-poor languages. Different mechanisms are available for preparing the parallel corpus. The major issue in preparing parallel corpus is data replication that is handled during preprocessing. The other issue in machine translation is the out-of-vocabulary (OOV) problem. Earlier dictionaries are used to handle OOV problems. To overcome this problem the rare words are segmented into sequences of subwords during preprocessing. The parameters like accuracy, perplexity, cross-entropy and BLEU scores shows better translation quality for NMT with effective preprocessing.
Internet of things and fuzzy logic for smart street lighting prototypes Mindit Eriyadi; Ade Gafar Abdullah; Hasbullah Hasbullah; Sandy Bhawana Mulia
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp528-535

Abstract

Internet of things (IoT) and fuzzy logic are very useful in increasing the efficiency and effectiveness of a system; this study applies both to the street lighting systems. The prototype of a street lighting control and monitoring system has been completed. The status of lights that are on or off and the value of the light intensity can be monitored by using IoT. The intensity of the light is fuzzy controlled by utilizing the presence of vehicles and pedestrians around the lights. The prototype is made with a scale against real conditions. Data is processed and transmitted using a microcontroller and Wi-Fi on the IoT module. Mobile applications have been used on smartphone interfaces to monitor and control lamps wherever they are connected to the Internet. Changes in the status of lights to turn on or off are done by the relay module. The fuzzy light intensity control system uses sensors and microcontrollers by utilizing the presence of vehicles and pedestrians around the lights. Performance evaluation has been carried out on a miniature street lighting with the results of monitoring and control following its function. An analysis of the resulting energy savings has been demonstrated.
Implementation of generative adversarial networks in HPCC systems using GNN bundle Ambu Karthik; Jyoti Shetty; Shobha G.; Roger Dev
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp374-381

Abstract

HPCC systems, an open source cluster computing platform for big data analytics consists of generalized neural network bundle with a wide variety of features which can be used for various neural network applications. To enhance the functionality of the bundle, this paper proposes the design and development of generative adversarial networks (GANs) on HPCC systems platform using ECL, a declarative language on which HPCC systems works. GANs have been developed on the HPCC platform by defining the generator and discriminator models separately, and training them by batches in the same epoch. In order to make sure that they train as adversaries, a certain weights transfer methodology was implemented. MNIST dataset which has been used to test the proposed approach has provided satisfactory results. The results obtained were unique images very similar to the MNIST dataset, as it were expected.

Page 32 of 173 | Total Record : 1722


Filter by Year

2012 2025


Filter By Issues
All Issue Vol 14, No 6: December 2025 Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 4: December 2024 Vol 13, No 3: September 2024 Vol 13, No 2: June 2024 Vol 13, No 1: March 2024 Vol 12, No 4: December 2023 Vol 12, No 3: September 2023 Vol 12, No 2: June 2023 Vol 12, No 1: March 2023 Vol 11, No 4: December 2022 Vol 11, No 3: September 2022 Vol 11, No 2: June 2022 Vol 11, No 1: March 2022 Vol 10, No 4: December 2021 Vol 10, No 3: September 2021 Vol 10, No 2: June 2021 Vol 10, No 1: March 2021 Vol 9, No 4: December 2020 Vol 9, No 3: September 2020 Vol 9, No 2: June 2020 Vol 9, No 1: March 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 More Issue