cover
Contact Name
Imam Much Ibnu Subroto
Contact Email
imam@unissula.ac.id
Phone
-
Journal Mail Official
ijai@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN : 20894872     EISSN : 22528938     DOI : -
IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like genetic algorithm, ant colony optimization, etc); reasoning and evolution; intelligence applications; computer vision and speech understanding; multimedia and cognitive informatics, data mining and machine learning tools, heuristic and AI planning strategies and tools, computational theories of learning; technology and computing (like particle swarm optimization); intelligent system architectures; knowledge representation; bioinformatics; natural language processing; multiagent systems; etc.
Arjuna Subject : -
Articles 1,722 Documents
A performance evaluation of convolutional neural network architecture for classification of rice leaf disease Afis Julianto; Andi Sunyoto
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp1069-1078

Abstract

Plant disease is a challenge in the agricultural sector, especially for rice production. Identifying diseases in rice leaves is the first step to wipe out and treat diseases to reduce crop failure. With the rapid development of the convolutional neural network (CNN), rice leaf disease can be recognized well without the help of an expert. In this research, the performance evaluation of CNN architecture will be carried out to analyze the classification of rice leaf disease images by classifying 5932 image data which are divided into 4 disease classes. The comparison of training data, validation, and testing are 60:20:20. Adam optimization with a learning rate of 0.0009 and softmax activation was used in this study. From the experimental results, the InceptionV3 and InceptionResnetV2 architectures got the best accuracy, namely 100%, ResNet50 and DenseNet201 got 99.83%, MobileNet 99.33%, and EfficientNetB3 90.14% accuracy.
Pineapple maturity classifier using image processing and fuzzy logic Edwin R. Arboleda; Christian Louis T. de Jesus; Leahlyne Mae S. Tia
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp830-838

Abstract

This paper describes the development of a prototype using an image processing system for extracting features and fuzzy logic for classifying the maturity of pineapple fruits depending on the colors of its scales. The standards that the system used are from Philippine National Standards for fresh fruits-pineapple for the 'queen' variant. The prototype automatically classified the maturity of queen pineapple variant grown in Munting Ilog, Silang, Cavite, Philippines. Data gathered are from the images loaded into the system using a camera unit under a controlled environment. The images loaded consist of the three faces of the pineapple sample, each with 120-degree coverage to capture the whole 360-degree view of the scale. The images then are sent to the system of the prototype where the features of the images are segmented based on the RGB color reduction. By using the fuzzy logic classifier, the obtained experimental results showed 100% accuracy for both the unripe and overripe maturity and 90% accuracy for the under-ripe and ripe maturity classification. The results obtained show that the developed image processing algorithm and the fuzzy-logic-based classifier could be used as an accurate and effective tool in classifying the maturity of pineapples.
Support vector machine based fault section identification and fault classification scheme in six phase transmission line A Naresh kumar; M Suresh Kumar; M Ramesha; Bharathi Gururaj; A Srikanth
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp1019-1024

Abstract

The higher complexity of a six phase transmission system (SPTS) construction and the large number of possible faults makes the protection task challenging. Moreover, the reverse & forward path faults in SPTS cannot be detected by traditional relay as it becomes under-reach. In this paper, a support vector machine (SVM) method including Haar wavelets for SPTS fault section identification and fault classification is focused. The positive-sequence component phase angle and currents at middle two buses are used to formulate a suggested method. Feasibility of suggested SVM is tested with a 138 kV, 300 km, 60 Hz, SPTS in MATLAB based Simulink platform. Several major parameters including far end and near end location conditions are taken to investigate the reach setting and accuracy of proposed SVM. This relaying method can detect the existence of fault in reverse & forward path in 1 ms time.
Delay aware downlink resource allocation scheme for future generation tactical wireless networks Ravi Shankar H.; Kiran Kumari Patil
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp1025-1035

Abstract

For a very long time protecting physical border integrity is considered to be a challenging thing. Government organizations must provide trade operations for economic growth and at the same time must prevent malicious activity. A different resource such as drones, sensors, and radars are used for monitoring border areas which must be communicated to the remote border security force. Efficient wireless communication is required for communicating information. However, these devices cannot connect to a centralized network directly; thus, are connected in an ad-hoc fashion to connect centralized server. Different tactical network applications require different quality of service (QoS); hus efficient resource scheduling plays a very important role. Existing resource scheduling adopting deep learning and reinforcement techniques fails to meet the quality of experience (QoE) of the user and doesn’t assure access fairness among contending users. Further, require network information in prior and induce high training time. For overcoming research issues, this paper presents a delay-aware downlink resource scheduling (DADRA) technique for future generation networks. The optimization problem of reducing buffer overflow and improving scheduling QoS performance is solved using a genetic algorithm with an improved crossover function. Experiment outcome shows DADRA achieves much better throughput, slot utilization, and packet failure performance when compared with standard resource allocation technique.
A systematic literature review of machine learning methods in predicting court decisions Nur Aqilah Khadijah Rosili; Noor Hidayah Zakaria; Rohayanti Hassan; Shahreen Kasim; Farid Zamani Che Rose; Tole Sutikno
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp1091-1102

Abstract

Envisaging legal cases’ outcomes can assist the judicial decision-making process. Prediction is possible in various cases, such as predicting the outcome of construction litigation, crime-related cases, parental rights, worker types, divorces, and tax law. The machine learning methods can function as support decision tools in the legal system with artificial intelligence’s advancement. This study aimed to impart a systematic literature review (SLR) of studies concerning the prediction of court decisions via machine learning methods. The review determines and analyses the machine learning methods used in predicting court decisions. This review utilised RepOrting Standards for Systematic Evidence Syntheses (ROSES) publication standard. Subsequently, 22 relevant studies that most commonly predicted the judgement results involving binary classification were chosen from significant databases: Scopus and Web of Sciences. According to the SLR’s outcomes, various machine learning methods can be used in predicting court decisions. Additionally, the performance is acceptable since most methods achieved more than 70% accuracy. Nevertheless, improvements can be made on the types of judicial decisions predicted using the existing machine learning methods.
A general framework for selecting appropriate criteria of student as research assistant using fuzzy delphi method Sulaiman Abd Anter; Bahbibi Rahmatullah; Shihab Hamad Khaleefah; Khairul Fikri Tamrin
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp839-846

Abstract

This research aims to build a general framework for choosing the most appropriate set of criteria for recruiting student as a research assistant in a university research project. University researchers could benefit from such a framework because it could optimize the costs of research while also enhancing students research skills. In the same time, it is also essential that the quality of research ought to measure up to the grants provided by the university. Nevertheless, it is a challenging problem for many research supervisors in the selection of qualified research assistants. In this paper, we attempted to resolve this problem by building a general framework for selecting the appropriate criteria in the evaluation of student performance. We explored earlier studies on the proposed evaluation criteria of the research assistant and identified 47 most impactful criteria criteria. We obtained experts in engineering and information technology fields from two universities to answer questionnaires to identify their commonly used criteria for grant research assistant (GRA). Then, all the identified criteria were evaluated using the fuzzy delphi method (FDM) for finding the best fitting criteria which resulted in 16 most impactful criteria.
Automated vision based defect detection using gray level co-occurrence matrix for beverage manufacturing industry Norhashimah Mohd Saad; A. R. Abdullah; W. H. W. Hasan; N. N. S. A. Rahman; N. H. Ali; I. N. Abdullah
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp818-829

Abstract

Defect inspection emerged as an important role for product quality monitoring process since it is a requirement of International Organization for Standardization (ISO) 9001. The used of manual inspection is impractical because of time consuming, human error, tiredness, repetitive and low productivity. Small and medium enterprises (SMEs) are industries that having problems in maintaining the quality of their products due to small capital provided. Therefore, automatic inspection is a promising approach to maintain product quality as well as to resolve the existing problems related to delay outputs and cost burden. This article presents a computerized analysis to detect color concentration defects that occur in beverage production based on texture information provided by gray level co-occurrence matrix (GLCM). Based on the texture information, GLCM cross-section is computed to extract the parameters for features of color concentration. The distance value between two colors is then computed using co-occurrence histogram. The defect results either pass or reject is determined using Euclidean distance and rule-based classification. The experimental results show 100% accuracy which makes the proposed technique can implimented for beverage manufacturing inspection process.
Deep learning techniques for physical abuse detection Srividya M. S; Anala M R; Chetan Tayal
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp971-981

Abstract

Physical abuse has become a societal problem. Mostly children, women and old age people are vulnerable to it especially in cases of domestic violence or workplace aggression. Reporting it is in itself a challenge especially if there is a pre-existing relationship between the abuser and victim. In this paper we propose a deep learning technique for human action recognition and human pose identification to tackle physical abuse by detecting it in real time. 3D convolution neural network (CNN) architecture is built using 3D convolution feature extractors which extract both temporal and spatial data in the video. With multiple convolution layer and subsampling layer, the input video has been converted into feature vector. Human pose estimation is done using the detection of key points on the body. Using these points and tracking them from one frame to another gives spatial-temporal features to feed into neural network (NN). We present metrics to measure the accuracies of such systems where real time reporting and fault tolerance capabilities are of utmost importance. Weighted metrics shows accuracy of about 89.42% with precision of about 85.82% and thus shows the effectiveness of the system.
Effect of filter sizes on image classification in CNN: a case study on CFIR10 and Fashion-MNIST datasets Owais Mujtaba Khanday; Samad Dadvandipour; Mohd Aaqib Lone
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp872-878

Abstract

Convolution neural networks (CNN or ConvNet), a deep neural network class inspired by biological processes, are immensely used for image classification or visual imagery. These networks need various parameters or attributes like number of filters, filter size, number of input channels, padding stride and dilation, for doing the required task. In this paper, we focused on the hyperparameter, i.e., filter size. Filter sizes come in various sizes like 3×3, 5×5, and 7×7. We varied the filter sizes and recorded their effects on the models' accuracy. The models' architecture is kept intact and only the filter sizes are varied. This gives a better understanding of the effect of filter sizes on image classification. CIFAR10 and FashionMNIST datasets are used for this study. Experimental results showed the accuracy is inversely proportional to the filter size. The accuracy using 3×3 filters on CIFAR10 and Fashion-MNIST is 73.04% and 93.68%, respectively.
MedicPlant: A mobile application for the recognition of medicinal plants from the Republic of Mauritius using deep learning in real-time Sameerchand Pudaruth; Mohamad Fawzi Mahomoodally; Noushreen Kissoon; Fadil Chady
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp938-947

Abstract

To facilitate the recognition and classification of medicinal plants that are commonly used by Mauritians, a mobile application which can recognise seventy different medicinal plants has been developed. A convolutional neural network (CNN) based on the TensorFlow framework has been used to create the classification model. The system has a recognition accuracy of more than 90%. Once the plant is recognised, a number of useful information is displayed to the user. Such information includes the common name of the plant, its English name and also its scientific name. The plant is also classified as either exotic or endemic followed by its medicinal applications and a short description. Contrary to similar systems, the application does not require an internet connection to work. Also, there are no pre-processing steps, and the images can be taken in broad daylight. Furthermore, any part of the plant can be photographed. It is a fast and non-intrusive method to identify medicinal plants. This mobile application will help the Mauritian population to increase their familiarity of medicinal plants, help taxonomists to experiment with new ways of identifying plant species, and will also contribute to the protection of endangered plant species.

Page 40 of 173 | Total Record : 1722


Filter by Year

2012 2025


Filter By Issues
All Issue Vol 14, No 6: December 2025 Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 4: December 2024 Vol 13, No 3: September 2024 Vol 13, No 2: June 2024 Vol 13, No 1: March 2024 Vol 12, No 4: December 2023 Vol 12, No 3: September 2023 Vol 12, No 2: June 2023 Vol 12, No 1: March 2023 Vol 11, No 4: December 2022 Vol 11, No 3: September 2022 Vol 11, No 2: June 2022 Vol 11, No 1: March 2022 Vol 10, No 4: December 2021 Vol 10, No 3: September 2021 Vol 10, No 2: June 2021 Vol 10, No 1: March 2021 Vol 9, No 4: December 2020 Vol 9, No 3: September 2020 Vol 9, No 2: June 2020 Vol 9, No 1: March 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 More Issue