cover
Contact Name
Imam Much Ibnu Subroto
Contact Email
imam@unissula.ac.id
Phone
-
Journal Mail Official
ijai@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN : 20894872     EISSN : 22528938     DOI : -
IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like genetic algorithm, ant colony optimization, etc); reasoning and evolution; intelligence applications; computer vision and speech understanding; multimedia and cognitive informatics, data mining and machine learning tools, heuristic and AI planning strategies and tools, computational theories of learning; technology and computing (like particle swarm optimization); intelligent system architectures; knowledge representation; bioinformatics; natural language processing; multiagent systems; etc.
Arjuna Subject : -
Articles 1,722 Documents
Biogeography in optimization algorithms: a closer look Padarabinda Palai; Debani Prasad Mishra; Surender Reddy Salkuti
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp982-989

Abstract

Biogeography can be broken down into bio and geography, which would imply the geography, i.e., the dispersion of biological organisms. The entire field of biology inspired algorithm is inclined towards providing the most optimal solution for a given problem set. Computer science experts want to always learn from the surroundings. Nature is sporadic and spontaneous and the erratic nature of a habitat is the very differentiating factor between a real world and an ideal world problem. Things change and that nothing remains constant. The diversification of a certain habitat is bound to change through external influences, some for the better, and some for the worse. This paper tries to mimic the natural influences in a habitat in a python environment and try to come up with a minimal objective value after iterating through the given metaheuristic algorithm.
Android based application for visually impaired using deep learning approach Haslinah Mohd Nasir; Noor Mohd Ariff Brahin; Mai Mariam Mohamed Aminuddin; Mohd Syafiq Mispan; Mohd Faizal Zulkifli
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp879-888

Abstract

People with visually impaired had difficulties in doing activities related to environment, social and technology. Furthermore, they are having issues with independent and safe in their daily routine. This research propose deep learning based visual object recognition model to help the visually impaired people in their daily basis using the android application platform. This research is mainly focused on the recognition of the money, cloth and other basic things to make their life easier. The convolution neural network (CNN) based visual recognition model by TensorFlow object application programming interface (API) that used single shot detector (SSD) with a pre-trained model from Mobile V2 is developed at Google dataset. Visually impaired persons capture the image and will be compared with the preloaded image dataset for dataset recognition. The verbal message with the name of the image will let the blind used know the captured image. The object recognition achieved high accuracy and can be used without using internet connection. The visually impaired specifically are largely benefited by this research.
Distributed parking management architecture based on multi-agent systems Nihal El Khalidi; Faouzia Benabbou; Nawal Sael
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp801-809

Abstract

With the increase of the number of vehicles on the road, several traffic congestion problems arise in the big city, and this has a negative impact on the economy, environment and citizens. The time spent looking for a parking space and the traffic generated contributes to mobility and traffic management problems. Hence the need for smart parking management to help drivers to find vacant spaces in a car park in a shorter time. Today, researchers are considering scenarios in which a large amount of services can be offered and used by drivers and authorities to improve the management of the city's car parks and standards of quality of life. Based on literature on smart parking management system (SPMS), we have established the most important services needed such as reservation, orientation, synchronization, and security. The dynamic distributed and open aspect of the problem led us to adopt a multi-agent modeling to ensure continuous evolution and flexibility of the management system. In this conceptual paper, we propose to structure those services on a multi-agent system (MAS) that covers the whole functions of a distributed SPMS. Each service is provided as an autonomous agent, able to communicate and collaborate with the others to propose optimized parking space to customers.
Brain stroke computed tomography images analysis using image processing: A Review Nur Hasanah Ali; Abdul Rahim Abdullah; Norhashimah Mohd Saad; Ahmad Sobri Muda; Tole Sutikno; Mohd Hatta Jopri
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp1048-1059

Abstract

Stroke is the second-leading cause of death globally; therefore, it needs immediate treatment to prevent the brain from damage. Neuroimaging technique for stroke detection such as computed tomography (CT) has been widely used for emergency setting that can provide precise information on an obvious difference between white and gray matter. CT is the comprehensively utilized medical imaging technology for bone, soft tissue, and blood vessels imaging. A fully automatic segmentation became a significant contribution to help neuroradiologists achieve fast and accurate interpretation based on the region of interest (ROI). This review paper aims to identify, critically appraise, and summarize the evidence of the relevant studies needed by researchers. Systematic literature review (SLR) is the most efficient way to obtain reliable and valid conclusions as well as to reduce mistakes. Throughout the entire review process, it has been observed that the segmentation techniques such as fuzzy C-mean, thresholding, region growing, k-means, and watershed segmentation techniques were regularly used by researchers to segment CT scan images. This review is also impactful in identifying the best automated segmentation technique to evaluate brain stroke and is expected to contribute new information in the area of stroke research.
Assessing naive Bayes and support vector machine performance in sentiment classification on a big data platform Redouane Karsi; Mounia Zaim; Jamila El Alami
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp990-996

Abstract

Nowadays, mining user reviews becomes a very useful mean for decision making in several areas. Traditionally, machine learning algorithms have been widely and effectively used to analyze user’s opinions on a limited volume of data. In the case of massive data, powerful hardware resources (CPU, memory, and storage) are essential for dealing with the whole data processing phases including, collection, pre-processing, and learning in an optimal time. Several big data technologies have emerged to efficiently process massive data, like Apache Spark, which is a distributed framework for data processing that provides libraries implementing several machine learning algorithms. In order to evaluate the performance of Apache Spark's machine learning library (MLlib) on a large volume of data, classification accuracies and processing time of two machine learning algorithms implemented in spark: naive Bayes and support vector machine (SVM) are compared to the performance achieved by the standard implementation of these two algorithms on large different size datasets built from movie reviews. The results of our experiment show that the performance of classifiers running under spark is higher than traditional ones and reaches F-measure greater than 84%. At the same time, we found that under spark framework, the learning time is relatively low.
Convolutional neural network-based face recognition using non-subsampled shearlet transform and histogram of local feature descriptors Yallamandaiah S; N. Purnachand
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp1079-1090

Abstract

Face recognition has been using in a variety of applications like preventing retail crime, unlocking phones, smart advertising, finding missing persons, and protecting law enforcement. However, the ability of face recognition techniques reduces substantially because of changes in pose, illumination, and expressions of the individual. In this paper, a novel face recognition approach based on a non-subsampled shearlet transform (NSST), histogram-based local feature descriptors, and a convolutional neural network (CNN) is proposed. Initially, the Viola-Jones algorithm is used for face detection and then the extracted face region is preprocessed by image resizing operation. Then, NSST decomposes the input image into a low and high-frequency component image. The local feature descriptors such as local phase quantization (LPQ), pyramid of histogram of oriented gradients (PHOG), and the proposed CNN are used for extracting features from the low-frequency component of the NSST decomposition. The extracted features are fused to generate the feature vector and classified using support vector machine (SVM). The efficiency of the suggested method is tested on face databases like Olivetti Research Laboratory (ORL), Yale, and Japanese female facial expression(JAFFE). The experimental outcomes reveal that the suggested face recognition method outperforms some of the state-of-the-art recognition approaches.
River classification and change detection from landsat images by using a river classification toolbox Supattra Puttinaovarat; Aekarat Saeliw; Siwipa Pruitikanee; Jinda Kongcharoen; Supaporn Chai-Arayalert; Kanit Khaimook; Paramate Horkaew
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp948-959

Abstract

Water bodies especially rivers are vital to existence of all lifeforms on Earth. Therefore, monitoring river areas and water bodies is essential. In the past, the monitoring relied essentially on manpower in surveying individual areas. However, there are limitations associated wih such surveys, e.g., tremendous amount of time and labour involved in expeditions. Presently, there have been accelerated development in remote sensing (RS) and artificial intelligence (AI) technology, particularly for change monitoring and detection in different areas globally. This research presents technical development of a toolbox for rivers classification and their change detection from Landsat images, by using water index analysis and four machine learning algorithms, which are K-Means, ISODATA, maximum likelihood classification (MLC), and support vector machine (SVM). Experimental findings indicated that all presented techniques were effective in detecting hydrological changes. The most accurate algorithm, nevertheless, for river classification was the SVM, with accuracy of 96.89%, precision of 98.61%, recall of 96.59%, and F-measure of 97.59%. Herein, it was demonstrated, in addition, that the developed toolbox was versatile and could be applied in rapid river change detection in other areas.
Image-based gramian angular field processing for pedestrian stride-length estimation using convolutional neural network Pham Doan Tinh; Bui Huy Hoang; Nguyen Duc Cuong
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp997-1008

Abstract

In an age when people spend most of their time indoors and smartphones become a necessity, there is an increasing demand to navigate user absolute position in indoor environments. While global positioning system (GPSs) perform well outdoors, their inaccuracy can not be tolerated in places where GPS signal is weak or barely detected. This leads to a number of solutions which utilize smartphone inertial measurement unit (IMU) to track user location. Most IMU-based methods track the trajectory of a person by using stride-length and heading estimation. Thus, the accuracy of stride-length estimation plays a very important role in these methods. Inspired by recent success in the field of computer vision and machine learning, we proposed an image-based stride-length estimation method that employs gramian angular field (GAF) in converting accelerometer data into images, and then feed them into a convolutional neural network (CNN) to predict the stride-length. We evaluate the performance of our proposed method by using a public dataset from Qu Wang in his GitHub repository (available at https://github.com/Archeries/StrideLengthEstimation). The result shows that our proposed method is superior in terms of accuracy in one stride and in large walking distance than others using only data collected from the accelerometer.
Facial emotion recognition using deep convolutional neural network and smoothing, mixture filters applied during preprocessing stage Pragnyaban Mishra; P. V. V. S. Srinivas
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp889-900

Abstract

The facial emotion recognition by the machine is a challenging task. From decades, researchers applied different methods to classify facial emotion into the different classes. The expansion of artificial intelligence in a form of deep convolutional neural network (CNN) changed the direction of the research. The facial emotion recognition using deep CNN is powerful in terms of taking bulk input images for processing and classify with high accuracy. It has been noticed in a few cases the classification model does not judge the facial images into appropriate classes due to the influence of noises. So, it is highly recommended to apply a noiseless image to the facial emotion recognition model for classification. We adopted a mechanism and proposed a model for classifying facial image into one of the seven classes with high accuracy. The images are smoothed before applying to the model by different smoothing process as part of image preprocessing. We claim facial emotion recognition with image smoothing by different filters or a mixture of filter are more robust than without preprocessing. The detail is explained in the subsequent sections.
Comparison of TOPSIS and MAUT methods for recipient determination home surgery Septya Maharani; Holis Ridwanto; Heliza Rahmania Hatta; Dyna Marisa Khairina; Muhammad Rivani Ibrahim
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp930-937

Abstract

House renovation is given by the government to the community, one of which is the assistance provided in the district. Long Mevery especially Tanah Abang Village, namely House Renovation Assistance. So it is necessary to implement a DSS in determining the recipient of home renovation assistance by comparing MAUT method and TOPSIS to assist the government in determining the right home renovation assistance recipient. There are 16 criteria and their weight values. This study uses the multi-attribute utility theory method (MAUT) and the order of preference technique based on the similarity to the ideal solution (TOPSI) as a calculation method to produce output and determine the level of accuracy of each method. The test in this study uses a confusion matrix and compares real data testing with the results of calculations on the system. The results of system testing using MAUT and TOPSIS methods, the accuracy of the MAUT method is 94.28% and the TOPSIS method is 35.71%.

Page 41 of 173 | Total Record : 1722


Filter by Year

2012 2025


Filter By Issues
All Issue Vol 14, No 6: December 2025 Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 4: December 2024 Vol 13, No 3: September 2024 Vol 13, No 2: June 2024 Vol 13, No 1: March 2024 Vol 12, No 4: December 2023 Vol 12, No 3: September 2023 Vol 12, No 2: June 2023 Vol 12, No 1: March 2023 Vol 11, No 4: December 2022 Vol 11, No 3: September 2022 Vol 11, No 2: June 2022 Vol 11, No 1: March 2022 Vol 10, No 4: December 2021 Vol 10, No 3: September 2021 Vol 10, No 2: June 2021 Vol 10, No 1: March 2021 Vol 9, No 4: December 2020 Vol 9, No 3: September 2020 Vol 9, No 2: June 2020 Vol 9, No 1: March 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 More Issue