cover
Contact Name
Budi Hermawan
Contact Email
-
Phone
+62081703408296
Journal Mail Official
info@kdi.or.id
Editorial Address
Jl. Flamboyan 2 Blok B3 No. 26 Griya Sangiang Mas - Tangerang 15132
Location
Kab. tangerang,
Banten
INDONESIA
bit-Tech
ISSN : 2622271X     EISSN : 26222728     DOI : https://doi.org/10.32877/bt
Core Subject : Science,
The bit-Tech journal was developed with the aim of accommodating the scientific work of Lecturers and Students, both the results of scientific papers and research in the form of literature study results. It is hoped that this journal will increase the knowledge and exchange of scientific information, especially scientific papers and research that will be useful as a reference for the progress of the State together.
Articles 18 Documents
Search results for , issue "Vol. 6 No. 3 (2024): bit-Tech" : 18 Documents clear
Google Assistant-Enabled Smart Lock System Using NodeMCU ESP8266 for IoT Arditya Dwifians
bit-Tech Vol. 6 No. 3 (2024): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v6i3.916

Abstract

Security is an important aspect that needs to be considered in a smart lock system. Conventional key tools currently have low security levels and are vulnerable to attacks. Therefore, this research aims to design a smart lock security system that utilizes Google Assistant features from Google and the NodeMCU ESP8266 module based on the Internet of Things (IoT). By using Google Assistant, users can control this smart lock with voice commands. The NodeMCU ESP8266 is used as the main controller in this system, responsible for receiving commands from Google Assistant and controlling the smart lock mechanism. A prototype implementation was conducted to test the performance of this smart lock security system. In the testing phase, the system's performance was measured based on voice command responsiveness, response speed, and the security it provides. The test results show that this smart lock security system offers a higher level of security compared to conventional key tools, with a security satisfaction rate of up to 90% among the 10 respondents related to the use of this device. With this research, it is expected to enhance community security by introducing a safer and more reliable smart lock tool based on virtual assistant. This security system, utilizing Google Assistant features and the NodeMCU ESP8266, can provide ease and convenience for users while maintaining optimal security.
Perancangan Aplikasi Point Of Sales Berbasis Web Dengan Market Basket Analysis Menggunakan Algoritma Apriori Pada PT Gowoon Mitra Jaya Jonathan Susanto; Indah Fenriana
bit-Tech Vol. 6 No. 3 (2024): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v6i3.926

Abstract

This research project focuses on the design and development of a web-based Point of Sale (POS) application that incorporates advanced analytical techniques, specifically Market Basket Analysis with the Apriori algorithm and the Association Rule method. The primary objective of this web-based POS system is to empower retailers in managing their sales transactions efficiently and gaining valuable insights into customer purchasing behavior. The web-based POS application is multifaceted, offering features such as sales transaction recording, product inventory management, and customer data tracking. What sets it apart is the integration of the Apriori algorithm and Association Rule method, which enable the system to analyze and understand customer purchasing patterns. It identifies strong product associations and establishes rules that support intelligent decision-making for businesses. The advantages of Market Basket Analysis are substantial. Retailers can identify relevant purchase patterns, such as frequently co-purchased products or cross-selling opportunities. This information can be used to enhance marketing strategies, optimize product placement in stores, and create bundled product offerings, ultimately boosting sales and revenue. By analyzing transaction data and recognizing patterns, retailers can streamline their operations, minimize wastage, and allocate resources more effectively. In summary, this research project showcases the transformative potential of integrating Market Basket Analysis, the Apriori algorithm, and the Association Rule method into web-based POS systems. By doing so, retailers can enhance operational efficiency, boost sales, and improve customer satisfaction, ultimately leading to more successful and competitive businesses in the retail sector.
Sistem Peringatan Dini Pemantauan Banjir menggunakan Telegram berbasis Internet of Things AnathaPindika Wijaya; Rino
bit-Tech Vol. 6 No. 3 (2024): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v6i3.971

Abstract

Technology can be considered a human invention that is used to facilitate human activities. In the current increase and growth of technology, there are many technologies that have been created from time to time. Flooding is a natural disaster that can be caused by human behavior itself. Many floods occur due to blockage of water flow in gutters or drainage systems. The impact of a flood disaster are many things that harm us, if a flood occurs, it doesn't just result in material loss, it can even cause loss of life. Therefore, this research aims to create an Early Warning System for handling flood disasters based on the Internet of Things (IOT) using telegram as a monitoring control. According to the rule, if the water level distance is less than 10 cm, then the water level will be declared safe from flooding. Then, if it is greater than 10 cm and less than 15 cm, a flood warning will be issued, and if the water level is more than 15 cm, there will be a danger of flooding. The results of this research will show that this tool can detect water levels and send a warning/notification from the Telegram application.
Analysis and Design of Breeding Management Information System in Poultry Farms Alexius Hendra Gunawan; Verry Kuswanto; Junaedi
bit-Tech Vol. 6 No. 3 (2024): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v6i3.997

Abstract

Breeding management is indispensable in business development in the field of poultry farming where companies are required to keep up with the development of the digitalization era. Companies must be able to take advantage of opportunities in advances in information technology in obtaining accurate, fast and reliable information so that management can make decisions. PT. Peternakan Ayam Manggis has been using manual methods in recording the results of production or the process of breeding chicken farms. in making records using office software, namely excel, so that errors often occur and are often not realtime in making records. Records generated by poultry production include depletion, quarantine, culling, feed and egg production. in processing data generated manually can make it difficult for management to make decisions. The purpose of this research is to design an application that can be used by companies to obtain information during the breeding process.The research method in developing this application uses waterfall and design role analysis with data collection and using UML modeling. This information system application produces information about Breeding management including depletion, quarantine, feed, egg production, movement of chickens from one cage to another, culling. this information system application uses a database and application blackbox testing is carried out so that the application runs as needed.  
SISTEM PENYIRAMAN TANAMAN OTOMATIS BERBASIS INTERNET OF THINGS DAN ARDUINO SERTA MONITORING DENGAN TELEGRAM Rico Amanda
bit-Tech Vol. 6 No. 3 (2024): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v6i3.1094

Abstract

Watering plants is very important if plants are to grow healthy and fertile. Many plant owners do not water their plants because they are busy at work and busy activities outside the home. Watering plants in the form of a system that can work automatically is an integrated design that can help human work. The aim of this research is the application of the Internet of Things and Telegram in watering plants, as well as creating an application for monitoring plant growth and care using the Telegram application. The method used in this research is the internet of things. Internet of Things is a concept where certain objects have the ability to transfer data via a WiFi network, so this process does not require human-to-human or human-to-computer interaction. Everything is run automatically with the program. The Internet of Things is usually called LoT and this technology has developed rapidly starting from wireless technology, micro-electromechanical systems (MEMS) and the internet. The results of this research are that by using an automatic plant watering system based on the internet of things, plants can remain well maintained and the development of the plants can also be monitored via telegram. The results of the questionnaire respondents' answers were on average above 50% in choosing the answer "Strongly Agree". These results show that this application is easy to use and meets user needs.
Analisa Klasifikasi Penyakit Diabetes Dengan Algoritma Neural Network Sutrisno Sutrisno; Jupron
bit-Tech Vol. 6 No. 3 (2024): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v6i3.1161

Abstract

Metode yang populer dan efektif untuk mengidentifikasi dan klasifikasi diabetes adalah algoritma deep learning untuk klasifikasi dataset diabetes. Algoritma deep learning, terutama jaringan saraf tiruan juga dikenal sebagai neural networks telah terbukti sangat efektif dalam menangani tugas klasifikasi data medis, seperti diabetes. Dalam penelitian sebelumnya, algoritma neural network digunakan untuk mengklasifikasikan penyakit diabetes , tetapi nilai akurasinya masih di bawah 80,5%. Karena nilai akurasi masih kurang maksimal, penelitian ini bertujuan untuk meningkatkannya. Penggunaan metode pemrosesan yang lebih akurat, fine tuning hyperparameter, untuk memastikan data sudah normal pada setiap fitur yaitu dengan metode normalisasi standard, kemudian menambahkan hiden layer sebanyak 2 layer dengan harapan mempelajari klasifikas yang tidak bisa dipisahkan secara linier. Dalam penelitian ini, beberapa langkah pembaharuan dilakukan selain besaran hiden layer juga besaran test size. Pembaruan ini bertujuan untuk meningkatkan akurasi yang lebih besar, serta hasil yang lebih baik untuk presisi, recall dan F1. Artikel ini menggunakan data umum atau sekunder dari laman Kaggle. Penelitian ini dilakukan untuk meningkatkan pengetahuan tentang cara mencegah diabetes. Gejala penyakit ini termasuk kadar gula sewaktu lebih dari 200 mg/dl dan kadar gula puasa lebih dari 126.mg/dl, antara tahun 1998 dan 2014, Badan Kesehatan Dunia melaporkan peningkatan dramatis dalam jumlah kasus diabetes di seluruh dunia, dari 108 juta menjadi 422 juta.
Implementation of DHCP Snooping Method to Improve Security on Computer Networks Andi Purnomo
bit-Tech Vol. 6 No. 3 (2024): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v6i3.1174

Abstract

This research proposes the DHCP Snooping method which is used to increase security on computer networks because Dynamic Host Configuration Protocol (DHCP) is a potential target for computer network attacks, one of the attack gaps that can occur in DHCP is the DHCP Rogue attack which is the simplest hacking method in which the attacker creates a fake DHCP connected to the core network allowing the hacker to set up a fake DHCP Server with full access to distribute IP addresses to clients. To address security gaps in computer networks in this research, researchers applied the DHCP Snooping method, which is a series of techniques to improve DHCP network security. When the DHCP server allocates IP addresses to clients on the LAN, DHCP Snooping can be configured on the LAN switch to allow only clients with certain IP and MAC addresses to have access to the network. By implementing the DHCP Snooping method you can increase security on computer networks where DHCP Snooping can distinguish which ports can be trusted (Trusted Port) and which ports cannot be trusted (Untrusted Port) so that the security of data and information in the computer network is maintained properly. Based on the results of this research, DHCP Snooping can prevent clients from getting DHCP IPs from DHCP Rouge because it has determined Trusted Port and Untrusted Port.
Kombinasi Metode AHP dan CPI Pada Sistem Pendukung Keputusan Pemilihan Guru Teladan Tingkat Sekolah Menegah Atas (SMA) BERBASIS Website Elisabeth Glodia Isulti Usfinit; Yoseph P.K. Kelen; Siprianus S Manek
bit-Tech Vol. 6 No. 3 (2024): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v6i3.1192

Abstract

Saat ini teknologi sangat berpengaruh terhadap seluruh aspek kehidupan manusia baik dalam bidang pendidikan, ekonomi, bisnis, maupun organisasi lainnya. Terkhusus dalam bidang pendidikan yang tidak bisa dijalankan dengan mengandalkan cara yang sangat manual sehingga pengetahuan manusia itu sendiri didukung oleh teknologi saat ini. Salah satunya adalah penggunaan komputer sebagai alat bantu untuk menyelesaikan pekerjaan di bidang teknologi informasi. Teknologi informasi saat ini semakin berkembang di segala bidang, terutama dalam bidang pendidikan, khususnya pada Guru. Pemilihan guru teladan di SMA Negeri Insana Tengah saat ini masih dilakukan dengan sangat manual sehingga penilaiannya kurang tepat dan kurang baik. Sehingga hasil keputusan kurang berkualitas dan kurang adil bagi guru lain yang memenuhi standar. Metode yang digunakan dalam pemilihan guru teladan ini yaitu dengan menggunakan metode AHP dan CPI, metode AHP digunakan untuk menentukan bobot dari setiap kriteria sedangkan metode CPI digunakan untuk menentukan perangkingan dari setiap alternatif atau dari setiap guru yang mendapatkan perangkingan. Oleh karena itu peneliti merancang sebuah sistem pendukung keputusan sehingga mempermudah kepala sekolah dalam memilih guru manakah yang merupakan guru teladan di sekolah SMAN Insana Tengah. Untuk mengantisipasi pemilihan Guru teladan yang kurang tepat dan akurat maka diperlukan suatu sistem pengambil keputusan yang berdasarkan pada 6 kriteria utama dengan nilai bobotnya masing-masing yaitu Dokumen portofolio 0.08%, Karya tulis 0.25%, Disiplin 0.11%, Kinerja Guru 0.14%, Guru pluss 024% dan Penampilan 0.18%.
RANCANG BANGUN MULTIMEDIA INTERAKTIF DENGAN MENERAPKAN MODEL PROBLEM-BASED LEARNING UNTUK MENINGKATKAN PROBLEM-SOLVING: RANCANG BANGUN MULTIMEDIA INTERAKTIF DENGAN MENERAPKAN MODEL PROBLEM-BASED LEARNING UNTUK MENINGKATKAN PROBLEM-SOLVING Johannes Alexander Putra; Enjang Ali Nurdin; Nusuki Syariati Fathimah; Wahyudin
bit-Tech Vol. 6 No. 3 (2024): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v6i3.1207

Abstract

Informatics is intricately intertwined with the mastery of problem-solving. Within this discipline, one of the fundamental areas of study revolves around the concepts of branching and looping. During field studies, several student problems were identified, such as difficulty solving programming problems presented in the form of stories. This resulted in a lack of problem-solving skills among students when it comes to story problems. Additionally, there were issues with instructional media and less interactive teaching methods. The aim of this research is to design multimedia that implements a problem-based learning model to enhance students' problem-solving abilities. The research method used is Research and Development (R&D) with the ADDIE development model. The study involved 36 students from class X-B RPL at SMKN 1 Cimahi. The data obtained are as follows:  1) The development of interactive multimedia achieved an average score of 88. 2) There is an increase in students' problem-solving indicators, with an average pretest score of 40.13 rising to 68.38 in the posttest. Additionally, an N-Gain of 0.47 was obtained, with details as follows: understanding the problem at 0.60, devising a plan at  0.41, carrying out the plan at 0.35, and looking back at 0.34. The overall N-Gain falls within the moderate category. 3) The response to the multimedia is 83, categorized as excellent. The N-Gain results and multimedia assessment indicate that both the multimedia and this research achieved good outcomes.
Perbandingan Naïve Bayes dan CNN yang Dioptimasi PSO pada Identifikasi Berita Hoax Politik Indonesia Yusuf Kurnia; Ellysha Dwiyanthi Kusuma; Lianny Wydiastuty Kusuma; Suwitno; Welman Apridius
bit-Tech Vol. 6 No. 3 (2024): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v6i3.1225

Abstract

Berita palsu dalam politik menjadi ancaman serius terhadap stabilitas demokrasi dan kepercayaan publik terhadap informasi. Fenomena ini tidak hanya meresahkan, tetapi juga memiliki dampak yang dapat mengganggu proses demokrasi serta kepercayaan masyarakat terhadap media dan pemerintah. Penelitian ini bertujuan untuk menyelidiki dan membandingkan kinerja dua algoritma yang berbeda, yaitu Naïve Bayes (NB) dan Convolutional Neural Network (CNN), yang telah dioptimalkan menggunakan Particle Swarm Optimization (PSO), dalam mendeteksi berita palsu di ranah politik Indonesia. Untuk mencapai tujuan ini, penelitian menggunakan dataset berita politik yang telah melalui proses text preprocessing, termasuk pembersihan data dan normalisasi teks. Hasil penelitian menunjukkan bahwa model Naïve Bayes secara konsisten mampu mengungguli kinerja CNN, baik dengan atau tanpa penerapan PSO. Akurasi model Naïve Bayes mencapai 90.71%, sementara CNN mencapai 80.86% tanpa PSO, 79.68% dengan PSO, dan Naïve Bayes dengan PSO mencapai 90.25%. Temuan ini menegaskan bahwa pendekatan menggunakan algoritma Naïve Bayes memiliki potensi lebih besar dalam mengidentifikasi berita palsu dalam konteks politik Indonesia. Kontribusi signifikan dari penelitian ini terletak pada pemahaman yang lebih mendalam mengenai metode deteksi berita palsu, serta memberikan wawasan yang penting bagi pengembangan strategi yang efektif dalam menanggulangi permasalahan berita palsu di era digital. Oleh karena itu, diharapkan bahwa penelitian ini akan memberikan nilai tambah dalam upaya mempertahankan keaslian informasi politik dan meningkatkan kualitas demokrasi di Indonesia.

Page 1 of 2 | Total Record : 18