Articles
155 Documents
Penentuan Solusi Numerik Pada Model Mangsa-Pemangsa Dengan Pemanenan Pada Mangsa Menggunakan Metode Runge-Kutta-Fehlberg
Solihatin, Nurul Asyifa;
Wulan, Elis Ratna
KUBIK Vol 4, No 2 (2019): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.15575/kubik.v4i2.6334
Model mangsa pemangsa dengan pemanenan pada mangsa merupakan pembaruan dari model mangsa pemangsa Lotka-Volterra, dimana pada model ini terdapat parameter pemanenan sebagai pengontrol populasi. Penyelesaian model mangsa pemangsa secara analitik dapat digunakan untuk memprediksi jumlah populasi pada saat yang diinginkan, namun tidak dapat memprediksi secara rinci jumlah populasi yang ada pada setiap pemantauan. Oleh karena itu metode numerik digunakan sebagai alternatif dalam penyelesaian masalah model mangsa pemangsa dengan pemanenan pada mangsa. Metode Runge-Kutta-Fehlberg digunakan penulis untuk menyelesaikan model mangsa pemangsa dengan pemanenan pada mangsa. Metode ini merupakan alternatif dari metode Taylor karena tidak memerlukan perhitungan turunan serta memiliki ketelitian yang tinggi. Hasil yang diperoleh pada studi kasus penelitian ini yaitu memiliki galat yang cukup kecil yaitu 0,0019404-0,027213 sehingga metode Runge-Kutta-Fehlberg merupakan metode yang teliti.
Analisis dan Simulasi Model Matematika untuk Kehidupan Sosial dan Dominasi dalam Koloni Semut Leptothorax Acervorum
Aryani, Irma;
Rahmi, Rahmi
KUBIK Vol 3, No 2 (2018): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.15575/kubik.v3i2.4114
Semut Leptothorax acervorum memiliki karakteristik kehidupan sosial, diantaranya pembagian peran, keharmonisan, dan kompetisi betina-betina dalam perebutan hak reproduksi di koloninya. Kompetisi yang mematikan ini terjadi baik sesama gyne maupun gyne dengan pekerja. Berdasarkan fenomena yang terjadi pada koloni semut Leptothorax acervorum akan dibangun model matematika. Model ini dibentuk dengan membagi populasi semut menjadi tiga kompartemen, yaitu gyne, pekerja, dan jantan pada populasi Leptothorax acervorum. Fenomena yang menarik seperti kompetisi-kompetisi yang terjadi pada semut Leptothorax acervorum dianalisis dan kestabilan koeksistensi juga akan ditunjukkan secara analitik. Selanjutnya, untuk melihat pengaruh kompetisi terhadap koeksistensi dalam koloni akan ditunjukkan dengan simulasi numerik.
Model Autoregressive dengan Pendekatan Conditional Maximum Likelihood Untuk Prediksi Harga Saham
Rahmadayanti, Cipta;
Rabbani, Hasbi;
Rohmawati, Aniq Atiqi
KUBIK Vol 3, No 1 (2018): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.15575/kubik.v3i1.2731
Jual beli saham merupakan salah satu bentuk investasi yang menjanjikan para investor, investasi berkaitan dengan return atau keuntungan yang didapatkan oleh suatu investor atas suatu investasi yang dilakukan terhadap saham tertentu. Untuk mendapatkan nilai return pada beberapa periode kedepan dapat dilakukan prediksi, pada dasarnya prediksi dapat dilakukan dengan menggunakan beberapa metode, namun dengan menggunakan model time series diharapkan menghasilkan prediksi yang baik karna karakteristik dari data saham merupakan data time series yang bergerak kontinu terhadap waktu. Pada penelitian ini digunakan model time series Autoregressive (AR) dengan pendekatan Conditional Maximum Likelihood untuk memprediksi nilai return serta dapat melihat pergerakan harga saham. Nilai parameter yang penting pada model Autoregressive orde 1 adalah . Hasil penaksiran parameter dengan Conditional Maximum Likelihood digunakan untuk memperoleh nilai hasil prediksi. Berdasarkan hasil analisis, model Autoregressive dengan pendekatan Conditional Maximum Likelihood adalah model yang baik untuk memprediksi return dan harga saham NASDAQ dengan RMSE sebesar 0,0002578. Berdasarkan hasil prediksi model AR(1), maka para investor dapat membuat strategi untuk berinvestasi pada indek saham NASDAQ agar dapat menghasilkan keuntungan.
Analisis Kestabilan Lokal Titik Ekuilibrium Model Dinamik Kebiasaan Merokok
Joko Harianto;
Mira Aprilia Marcus;
Jonner Nainggolan
KUBIK Vol 5, No 2 (2020): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.15575/kubik.v5i2.9348
Dinamika kebiasaan merokok dalam artikel ini dianalisis dengan pendekatan model epidemiologi. Lingkungan perokok dibagi menjadi empat populasi, yaitu populasi (Potential) menyatakan populasi dari individu-individu yang tidak merokok, populasi (Light) menyatakan populasi dari perokok ringan, populasi (Smokers) menyatakan populasi dari perokok berat, populasi menyatakan populasi dari individu-individu yang berhenti merokok sementara dan populasi menyatakan populasi dari individu-individu yang berhenti merokok secara permanen. Model tersebut dimodifikasi kemudian dianalisis titik ekuilibriumnya. Langkah pertama, ditentukan titik ekuilibrium bebas rokok. Langkah kedua, ditentukan titik ekuilibrium kebiasaan merokok. Langkah ketiga, ditentukan the Smoking Generation Number (R0 ) dengan menggunakan next generation matrix yang melibatkan radius spektral. Langkah terakhir, kestabilan lokal setiap titik ekuilibrium pada modelnya dianalisis. Hasil analisis menunjukkan bahwa titik ekuilibrium bebas rokok stabil asimtotik lokal saat nilai the Smoking Generation Number kurang dari satu. Sebaliknya, jika nilai the Smoking Generation Number lebih dari satu dan b1(m+g) lebih dari b2(b1-m), maka titik ekuilibrium perokok ringan stabil asimtotik lokal. Sedangkan titik ekuilibrium perokok berat stabil asimtotik lokal jika nilai the Heavy Smoking Generation Number lebih dari satu. Kemudian dilakukan simulasi numerik menggunakan Software Maple untuk mengecek hasil analisis kestabilan lokal titik ekuilibrium tersebut.
Representasi Deret ke dalam Bentuk Integral Lipat Dua
Siti Julaeha;
Arini Soesatyo Putri
KUBIK Vol 2, No 1 (2017): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.15575/kubik.v2i1.1473
Representasi suatu deret ke dalam bentuk lain merupakan salah satu kajian yang terdapat di dalam ilmu matematika. Salah satu representasi yang paling umum digunakan adalah representasi deret ke dalam bentuk integral, yang memungkinkan deret tersebut (khususnya deret tak terhingga) dapat ditentukan nilai atau jumlahnya. Banyak cara untuk merepresentasikan deret ke dalam bentuk integral, diantaranya dengan memanfaatkan ekspansi deret Maclaurin, fungsi khusus integral (fungsi gamma dan beta), serta teorema-teorema yang telah ada sebelumnya. Anthony Sofo [9] dalam kajiannya telah menemukan bentuk deret , yang kemudian akan dikaji bagaimana bentuk integral lipat dua dari deret tersebut di dalam paper ini beserta analisis kekonvergenannya.
Optimisasi Portofolio Expected Shortfall Pada Saham Sektor Energi dan Pertambangan
Nurul Fadilah;
Betty Subartini;
Firman Sukono
KUBIK Vol 5, No 1 (2020): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.15575/kubik.v5i1.7455
Saham sebagai salah satu produk investasi di pasar modal Indonesia tentunya memiliki risiko yang dapat memengaruhi keputusan investor dalam berinvestasi, dalam menentukan risiko dapat dilakukan dengan melihat diversifikasi portofolio dari beberapa saham. Data saham meliputi perusahaan energi dan pertambangan yang memenuhi kriteria kapitalisasi pasar besar dan Debt to Equity Ratio (DER) rendah. Salah satu metode yang dapat digunakan untuk membentuk diversifikasi portofolio adalah Expected Shortfall (ES). ES adalah nilai ekspektasi dari return jika return tersebut melampaui batas return maksimum (Value-at-Risk). Dengan tujuan untuk meminimumkan risiko investasi. Dari perhitungan ES didapat masing-masing proporsi saham dalam satu portofolio optimal, dari beberapa portofolio yang dibentuk terlihat bahwa portofolio yang terdiri dari kombinasi saham paling banyak maka portofolio tersebut menghasilkan risiko yang paling rendah. Data dalam penelitian ini adalah data harga penutupan saham harian sector energi dan pertambangan periode Januari 2016 – Januari 2019. Ada beberapa tahap dalam penelitian ini. Langkah pertama adalah menghitung nilai return setiap saham perusahaan. Kemudian menghitung nilai expected return dan korelasi antar saham dari setiap saham perusahaan. Setelah itu pembentukan portofolio dan perumusan portofolio dengan menggunakan Expected Shortfall dengan fungsi tujuan yang dibentuk.
Estimasi Parameter Distribusi Eksponensial yang Dipangkatkan dan Distribusi Campuran Eksponensial untuk Data Masa Hidup
Imas Sukarsih;
Asep Solih Awalluddin;
Elis Ratna Wulan
KUBIK Vol 1, No 1 (2015): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.15575/kubik.v1i1.320
Tulisan ini membahas tentang estimasi parameter distribusi eksponensial yang dipangkatkan dan distribusi campuran eksponensial. Distribusi eksponensial yang dipangkatkan merupakan perluasan dari distribusi eksponensial standar yang fungsinya diambil dari fungsi distribusi kumulatif yang kemudian dipangkatkan. Distribusi lainnya adalah distribusi campuran eksponensial, distribusi campuran eksponensial merupakan kombinasi linier dari dua atau lebih distribusi eksponensial standar yang bobot dan parameternya berbeda. Estimasi parameter dari distribusi eksponensial yang dipangkatkan dan distribusi campuran eksponensial secara analitis diturunkan melalui metode maksimum likelihood, sehingga diperoleh hasil estimasi untuk masing-masing parameter kedua distribusi tersebut. Estimasi distribusi eksponensial yang dipangkatkan pada data masa hidup pendingin pesawat dilakukan dengan menggunakan metode Newton Raphson. Dari hasil estimasi tersebut selanjutnya dilakukan analisis keandalan untuk data masa hidup.
Penerapan Hukum Mortalita Gompertz untuk Perhitungan Dana Tabarru’ dengan Metode Cost of Insurance
Hidayat, Fauziah Noor;
Cahyandari, Rini;
Awalluddin, Asep Solih
KUBIK Vol 4, No 1 (2019): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.15575/kubik.v4i1.5676
Berdasarkan cara pengelolaan dananya, asuransi syari’ah dibedakan menjadi dua, asuransi dengan unsur tabungan dan asuransi tanpa unsur tabungan. Didalam asuransi tanpa unsur tabungan, dana yang diberikan oleh peserta asuransi akan dimasukkan ke dalam satu rekening saja, yaitu rekening tabarru’. Sehingga adanya ketidakjelasan dalam presentase dana tabarru’. Cost of Insurance merupakan metode yang digunakan dalam perhitungan dana tabarru’ yang terdiri dari beberapa komponen yaitu: tabel mortalita yang digunakan, asumsi hasil investasi (i) dan asumsi biaya pengelolaan ( ). Didalam penelitian ini dilakukan perhitungan tabel mortalita dengan Hukum Gompertz yang memperhitungan risiko karena faktor usia, didalam perhitungannya dibutuhkan data acak usia yang berdistribusi Gompertz. Tabel mortalita dengan Hukum Gompertz ini yang akan digunakan untuk perhitungan dana tabarru’. Penulis menggunakan ilustrasi dengan usia peserta 41 tahun, tingkat investasi sebesar 5%, dan biaya pengelolaan sebesar 30%. Didapatkan dana tabarru’ dengan menggunakan metode Cost of Insurance sebesar Rp. 156.762/bulan.
Rank dari Matriks yang Ajaib Secara Diagonal
Nurjanah, Siti;
Putri, Melani Yana;
Ilahi, Fadilah
KUBIK Vol 3, No 2 (2018): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.15575/kubik.v3i2.4110
Matriks yang ajaib secara diagonal adalah suatu matriks A yang memenuhi syarat tertentu. Dalam jurnal ini akan ditunjukkan bagaimana mengkonstruksi matriks yang ajaib secara diagonal dan menunjukkan bahwa matriks yang ajaib secara diagonal memiliki rank kurang dari atau sama dengan 2.
PENGGUNAAN METODE MAXIMUM SUPPLY WITH MINIMUM COST UNTUK MENDAPATKAN SOLUSI LAYAK AWAL MASALAH TRANSPORTASI
Wahyu Satrio Raharjo;
Elis Ratna Wulan
KUBIK Vol 2, No 2 (2017): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.15575/kubik.v2i2.1855
Penelitian ini membahas tentang sebuah masalah transportasi yang diselesaikan dengan metode transportasi Maximum Supply with Minimum Cost. Dimana pada langkah awal kita memilih baris dengan persediaan terbesar, kemudian pilih kolom dengan biaya termurah, setelah itu isi permintaan dengan persediaan semaksimal mungkin, lanjutkan sampai semua permintaan terpenuhi. Objek penelitian pada kasus ini adalah sebuah model transportasi dengan empat buah penyedia dengan tiga buah destinasi dengan jumlah permintaan dan persediaan yang seimbang. Setelah menggunakan metode Maximum Supply with minimum cost pada objek penelitian tersebut diperoleh biaya minimal sebesar $ 332.