Claim Missing Document
Check
Articles

Found 17 Documents
Search

Local Stability Analysis of an SVIR Epidemic Model Harianto, Joko
CAUCHY Vol 5, No 1 (2017): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (787.973 KB) | DOI: 10.18860/ca.v5i1.4388

Abstract

In this paper, we present an SVIR epidemic model with deadly deseases. Initially the basic formulation of the model is presented. Two equilibrium point exists for the system; disease free and endemic equilibrium. The local stability of the disease free and endemic equilibrium exists when the basic reproduction number less or greater than unity, respectively. If the value of R0 less than one then the desease free equilibrium is locally stable, and if its exceeds, the endemic equilibrium is locally stable. The numerical results are presented for illustration.
SVIR Epidemic Model with Non Constant Population Harianto, Joko; Suparwati, Titik
CAUCHY Vol 5, No 3 (2018): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (774.54 KB) | DOI: 10.18860/ca.v5i3.5511

Abstract

In this article, we present an SVIR epidemic model with deadly deseases and non constant population. We only discuss the local stability analysis of the model. Initially the basic formulation of the model is presented. Two equilibrium point exists for the system; disease free and endemic equilibrium point. The local stability of the disease free and endemic equilibrium exists when the basic reproduction number less or greater than unity, respectively. If the value of R0 less than one then the desease free equilibrium point is locally asymptotically stable, and if its exceeds, the endemic equilibrium point is locally asymptotically stable. The numerical results are presented for illustration.
Local Dynamics of an SVIR Epidemic Model with Logistic Growth Harianto, Joko; Sari, Inda Puspita
CAUCHY Vol 6, No 3 (2020): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v6i3.9891

Abstract

Discussion of local stability analysis of SVIR models in this article is included in the scope of applied mathematics. The purpose of this discussion was to provide results of local stability analysis that had not been discussed in some articles related to the SVIR model. The SVIR models discussed in this article involve logistics growth in the vaccinated compartment. The results obtained, i.e. if the basic reproduction number less than one and m is positive, then there is one equilibrium point i.e. E0 is locally asymptotically stable. In the field of epidemiology, this means that the disease will disappear from the population. However, if the basic reproduction number more than one and b1 more than b, then there are two equilibrium points i.e. disease-free equilibrium point denoted by E0 and the endemic equilibrium point denoted by E1*. In this case the endemic equilibrium point E1* is locally asymptotically stable. In the field of epidemiology, this means that the disease will remain in the population. The numerical simulation supports these results.
ANALISIS KESTABILAN LOKAL TITIK EKUILIBRIUM MODEL EPIDEMI SEIV DENGAN PERTUMBUHAN LOGISTIK Harianto, Joko; Sari, Inda Puspita
Majalah Ilmiah Matematika dan Statistika Vol 22 No 1 (2022): Majalah Ilmiah Matematika dan Statistika
Publisher : Jurusan Matematika FMIPA Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/mims.v22i1.30174

Abstract

The SEIV model uses population growth which is assumed to follow logistical growth. The model is studied then analyzed. The analysis shows that the non-endemic (disease-free) equilibrium point is locally asymptotically stable when the basic reproduction number less than one, while the endemic equilibrium point is locally asymptotically stable when the basic reproduction number greater than one. Then a numerical simulation was carried out using Maple software to support the results of the local stability analysis of the equilibrium point. Based on numerical simulations, it shows that a disease will disappear from the population when the basic reproduction number less than one and for a long time a disease will remain in the population (still an epidemic) when the basic reproduction number greater than one.Keywords: SEIV model, logistical growth, equilibrium point, basic reproduction numberMSC2020: 92C60
Analisis Kestabilan Lokal Titik Ekuilibrium Model Dinamik Kebiasaan Merokok Joko Harianto; Mira Aprilia Marcus; Jonner Nainggolan
KUBIK Vol 5, No 2 (2020): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v5i2.9348

Abstract

Dinamika kebiasaan merokok dalam artikel ini dianalisis dengan pendekatan model epidemiologi. Lingkungan perokok dibagi menjadi empat populasi, yaitu populasi  (Potential) menyatakan populasi dari individu-individu yang tidak merokok, populasi  (Light) menyatakan populasi dari perokok ringan, populasi (Smokers) menyatakan populasi dari perokok berat, populasi  menyatakan populasi dari individu-individu yang berhenti merokok sementara dan populasi  menyatakan populasi dari individu-individu yang berhenti merokok secara permanen. Model  tersebut dimodifikasi kemudian dianalisis titik ekuilibriumnya. Langkah pertama, ditentukan titik ekuilibrium bebas rokok. Langkah kedua, ditentukan titik ekuilibrium kebiasaan merokok. Langkah ketiga, ditentukan the Smoking Generation Number (R0 ) dengan menggunakan next generation matrix yang melibatkan radius spektral. Langkah terakhir, kestabilan lokal setiap titik ekuilibrium pada modelnya dianalisis. Hasil analisis menunjukkan bahwa titik ekuilibrium bebas rokok stabil asimtotik lokal saat nilai the Smoking Generation Number kurang dari satu. Sebaliknya, jika nilai the Smoking Generation Number lebih dari satu dan b1(m+g) lebih dari b2(b1-m), maka titik ekuilibrium perokok ringan stabil asimtotik lokal. Sedangkan titik ekuilibrium perokok berat stabil asimtotik lokal jika nilai the Heavy Smoking Generation Number lebih dari satu. Kemudian dilakukan simulasi numerik menggunakan Software Maple untuk mengecek hasil analisis kestabilan lokal titik ekuilibrium tersebut.
Effect of Population Density on the Model of the Spread of Measles Joko Harianto; Katarina Lodia Tuturop; Venthy Angelika
Numerical: Jurnal Matematika dan Pendidikan Matematika Vol. 4 No. 2 (2020)
Publisher : Institut Agama Islam Ma'arif NU (IAIMNU) Metro Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25217/numerical.v4i2.831

Abstract

This study is expected to contribute to the health sector, specifically to describe the dynamics of the measles spread through the models that have been analyzed. One of the factors that became the focus of this study was reviewing the influence of population density on measles spread. The initial step formulated the model and then determined the primary reproduction number and analyzed the stability of the model equilibrium point. The results of the analysis of this model show that there are two conditions for the value of which is a requirement that the existence of two model equilibrium points as well as local stability is needed, namely and . When , there exists a unique equilibrium point, called the non-endemic equilibrium point denoted by . Conversely, when , there are two equilibrium points, namely and the endemic equilibrium point characterized by . The results of local stability analysis show that when , the equilibrium point is stable asymptotic locally. It means that if hold, then in a long time there will not be a spread of disease in the susceptible and vaccinated sub-population, or in other words, the outbreak of the disease will stop. Conversely, when equilibrium point is stable asymptotic locally. It means that if , then measles disease is still in the environment for an infinite time with the condition of the proportions of each sub-population approach to , , and .
Analisis Kestabilan Lokal Titik Ekuilibrium Model Dinamik Kebiasaan Merokok Joko Harianto; Mira Aprilia Marcus; Jonner Nainggolan
KUBIK Vol 5, No 2 (2020): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v5i2.9348

Abstract

Dinamika kebiasaan merokok dalam artikel ini dianalisis dengan pendekatan model epidemiologi. Lingkungan perokok dibagi menjadi empat populasi, yaitu populasi  (Potential) menyatakan populasi dari individu-individu yang tidak merokok, populasi  (Light) menyatakan populasi dari perokok ringan, populasi (Smokers) menyatakan populasi dari perokok berat, populasi  menyatakan populasi dari individu-individu yang berhenti merokok sementara dan populasi  menyatakan populasi dari individu-individu yang berhenti merokok secara permanen. Model  tersebut dimodifikasi kemudian dianalisis titik ekuilibriumnya. Langkah pertama, ditentukan titik ekuilibrium bebas rokok. Langkah kedua, ditentukan titik ekuilibrium kebiasaan merokok. Langkah ketiga, ditentukan the Smoking Generation Number (R0 ) dengan menggunakan next generation matrix yang melibatkan radius spektral. Langkah terakhir, kestabilan lokal setiap titik ekuilibrium pada modelnya dianalisis. Hasil analisis menunjukkan bahwa titik ekuilibrium bebas rokok stabil asimtotik lokal saat nilai the Smoking Generation Number kurang dari satu. Sebaliknya, jika nilai the Smoking Generation Number lebih dari satu dan b1(m+g) lebih dari b2(b1-m), maka titik ekuilibrium perokok ringan stabil asimtotik lokal. Sedangkan titik ekuilibrium perokok berat stabil asimtotik lokal jika nilai the Heavy Smoking Generation Number lebih dari satu. Kemudian dilakukan simulasi numerik menggunakan Software Maple untuk mengecek hasil analisis kestabilan lokal titik ekuilibrium tersebut.
Kestabilan Lokal Titik Ekuilibrium Model Transmisi Penyakit Tuberkulosis Joko Harianto; Katarina Lodia Tuturop
Jurnal Matematika, Statistika dan Komputasi Vol. 19 No. 3 (2023): MAY, 2023
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/j.v19i3.25843

Abstract

A crucial part of illness prevention over the past few decades has been played by mathematical models. The dynamic system can be used to characterize the TB infection process. For the purpose of developing future prevention strategies, it is crucial to comprehend the effect of vaccination approach on the control of TB. We investigated the impact of vaccination strategies on TB disease transmission through a dynamic model. The model discussed involves logistical population growth. The purpose of this discussion is to analyze the local stability of the equilibrium point of the TB disease transmission model. Numerical simulations are provided to illustrate the theoretical results. The existence and local stability of the model equilibrium point depends on the basic reproduction number analytically. Based on secondary data, the basic reproduction number values are 0.98 and 4.12, respectively. Numerical simulations for these two values support the analysis results obtained. If the basic reproduction number is less than one, then the transmission of TB disease can be eradicated. However, if the basic reproduction number is more than one, the vaccination strategy is not sufficient to control TB transmission.
Analisis Kestabilan Model SIR-SI untuk Transmisi Penyakit Demam Berdarah Dengue Joko Harianto; Katarina Lodia Tuturop
Jurnal Matematika, Statistika dan Komputasi Vol. 20 No. 1 (2023): SEPTEMBER, 2023
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/j.v20i1.27746

Abstract

The SIR-SI mathematical model for the problem of dengue virus spread which has been discussed in previous studies has not involved the saturated birth rate of mosquito. This discussion aims to construct and analyze the SIR-SI model which involves competition factors in mosquito population growth so that the model used to predict the number of dengue virus infections becomes more realistic. In addition, sensitivity analysis and numerical simulations of the models that have been constructed are also discussed. The method used is a literature study using theories derived from reputable articles. The results of this discussion show that the existence of an equilibrium point and its stability depends on the basic reproduction number. If the basic reproduction number is less than one, the number of cases of dengue fever infection will decrease. However, if the basic reproduction number is more than one, the number of cases of dengue infection will not decrease and even tend to be constant at a certain number. The average parameter of bites carried out by one mosquito in all humans () is the most dominant in increasing the spread of dengue disease in humans. On the other hand, mosquitoes' natural death rate parameter () is the most dominant in reducing the spread of dengue fever in humans. This information provides input and evaluation to decision-makers in solving the problem of the spread of dengue fever.
KESTABILAN LOKAL TITIK EKUILIBRIUM MODEL PENYEBARAN PENYAKIT POLIO Joko Harianto; Venthy Angelika; Feby Seru
Jurnal Matematika UNAND Vol 12, No 2 (2023)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.12.2.153-167.2023

Abstract

The fact shows that polio is very dangerous to humanity, it is necessary to study the dynamics of the spread of polio. One way, namely a mathematical approach in the form of a mathematical model for the spread of polio. The mathematical model used in this study is the SEIV model. This study aims to provide a description of the dynamics of the spread of polio. The results of this study are expected to be used as a reference to study the dynamics of the spread of polio in an area. The method used in the implementation of this research is literature study. The first stage starts with the model formulation. The second stage analyzes the model that has been formed and the last one makes a model simulation. The formed SEIV model is a system of nonlinear differential equations. The basic reproduction number  parameter is obtained from the analysis of the system. If the basic reproduction number less than one, then there is a single point of  free disease equilibrium that is locally stable asymptotically. Conversely, if the basic reproduction number more than one, then there are two points of equilibrium, namely the point of free equilibrium of disease  and the endemic equilibrium point . When the basic reproduction number more than one endemic equilibrium point  is stable asymptotically locally. Based on the simulation, if  the basic reproduction number less than one for t → ∞ and value (S, E, I, V) are close enough to E*, the system solution will move to E*. This means that if the basic reproduction number less than one, the disease will not be endemic and tends to disappear in an infinite amount of time. Conversely, if the basic reproduction number more than one for t → ∞ and the value (S, E, I, V) are close enough to E^, then the system solution will move towards E^. This means that if the basic reproduction number more than one, then the disease will remain in the population but not reach extinction in an infinite amount of time