cover
Contact Name
Resmawan
Contact Email
resmawan@ung.ac.id
Phone
+6285255230451
Journal Mail Official
editorial.jjbm@ung.ac.id
Editorial Address
Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96119, Gorontalo, Indonesia
Location
Kota gorontalo,
Gorontalo
INDONESIA
Jambura Journal of Biomathematics (JJBM)
ISSN : -     EISSN : 27230317     DOI : https://doi.org/10.34312/jjbm.v1i1
Core Subject : Science, Education,
Jambura Journal of Biomathematics (JJBM) aims to become the leading journal in Southeast Asia in presenting original research articles and review papers about a mathematical approach to explain biological phenomena. JJBM will accept high-quality article utilizing mathematical analysis to gain biological understanding in the fields of, but not restricted to Ecology Oncology Neurobiology Cell biology Biostatistics Bioinformatics Bio-engineering Infectious diseases Renewable biological resource Genetics and population genetics
Articles 5 Documents
Search results for , issue "Volume 1, Issue 1: June 2020" : 5 Documents clear
Parameters Estimation of Generalized Richards Model for COVID-19 Cases in Indonesia Using Genetic Algorithm Maya Rayungsari; Muhammad Aufin; Nurul Imamah
Jambura Journal of Biomathematics (JJBM) Volume 1, Issue 1: June 2020
Publisher : Department of Mathematics, State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v1i1.6910

Abstract

In this research, genetic algorithm was implemented to estimate parameters in generalized Richards model by adjusting COVID-19 case data in Indonesia. Data collected were the daily new cases and cumulative number of COVID-19 case in Indonesia from early March to early June 2020, that was reported by databoks.katadata.co.id. The best pair of parameters was selected based on the lowest cost function value, determined from the distance between data with estimated model and real data. Next, model with estimated parameters is used to predict new cases and cumulative cases for upcoming days. Numerical simulations were carried out so that the peaks and ends of the COVID-19 pandemic can be seen easily.
Revitalisasi Danau Limboto dengan Pengerukan Endapan di Danau: Pemodelan, Analisis, dan Simulasinya Sri Lestari Mahmud; Novianita Achmad; Hasan S. Panigoro
Jambura Journal of Biomathematics (JJBM) Volume 1, Issue 1: June 2020
Publisher : Department of Mathematics, State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v1i1.6945

Abstract

Limboto lake is one of assets of Province of Gorontalo that provides many benefits to the surrounding society. The main problem of Limboto lake is the silting of the lake due to sedimentation caused by forest erosion, household waste, water hyacinth, and fish farming which is not environmentally friendly. In this article, a mathematical approach is used to modeling the Limboto lake siltation by including the revitalization solution namely the lake dredging. Mathematical modeling begins by building and limiting assumptions, constructing variables and parameters in mathematical symbols, and forming them into a first order differential equation system deterministically. Furthermore, we study the dynamics of the model such as identifying the existence of equilibrium points and their stability conditions. We also give a numerical simulations to show the conditions based on the stability requirements in previous analytical results.
A Stage-Structure Rosenzweig-MacArthur Model with Effect of Prey Refuge Lazarus Kalvein Beay; Maryone Saija
Jambura Journal of Biomathematics (JJBM) Volume 1, Issue 1: June 2020
Publisher : Department of Mathematics, State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v1i1.6891

Abstract

We proposed and analyzed a stage-structure Rosenzweig-MacArthur model incorporating a prey refuge.  It is assumed that the prey is a stage-structure population consisting of two compartments known as immature prey and mature prey. The model incorporates the functional response Holling type-II. In this work, we investigate all the biologically feasible equilibrium points, and it is shown that the system has three equilibrium points. Sufficient conditions for the local stability of the non-negative equilibrium point of the model are also derived. All points are conditionally locally asymptotically stable. By constructing Jacobian matrix and determined eigenvalues, we analyzed the local stability of the trivial equilibrium and non-predator equilibrium points. Specifically for coexistence equilibrium point, Routh-Hurwitz criterion used to analyze local stability. In addtion, we investigated the effect of immature prey refuge. Our mathematical analysis exhibits that immature prey refuge have played a crucial role in the behavioral system. When the effect of immature prey refuge (constant m) increases, it is can stabilize non-predator equilibrium point, where all the species can not exists together. And conversely, if contant m decreases, it is can stabilize coexistence equilibrium point then all the species can exists together. The work is completed with a numerical simulation to confirmed analitical results
Analisis Kestabilan Model Predator-Prey dengan Infeksi Penyakit pada Prey dan Pemanenan Proporsional pada Predator Siti Maisaroh; Resmawan Resmawan; Emli Rahmi
Jambura Journal of Biomathematics (JJBM) Volume 1, Issue 1: June 2020
Publisher : Department of Mathematics, State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v1i1.5948

Abstract

The dynamics of predator-prey model with infectious disease in prey and harvesting in predator is studied. Prey is divided into two compartments i.e the susceptible prey and the infected prey. This model has five equilibrium points namely the all population extinction point, the infected prey and predator extinction point, the infected prey extinction point, and the co-existence point. We show that all population extinction point is a saddle point and therefore this condition will never be attained, while the other equilibrium points are conditionally stable. In the end, to support analytical results, the numerical simulations are given by using the fourth-order Runge-Kutta method.
Bifurkasi Hopf pada Model Lotka-Volterra Orde-Fraksional dengan Efek Allee Aditif pada Predator Hasan S. Panigoro; Dian Savitri
Jambura Journal of Biomathematics (JJBM) Volume 1, Issue 1: June 2020
Publisher : Department of Mathematics, State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v1i1.6908

Abstract

This article aims to study the dynamics of a Lotka-Volterra predator-prey model with Allee effect in predator. According to the biological condition, the Caputo fractional-order derivative is chosen as its operator. The analysis is started by identifying the existence, uniqueness, and non-negativity of the solution. Furthermore, the existence of equilibrium points and their stability is investigated. It has shown that the model has two equilibrium points namely both populations extinction point which is always a saddle point, and a conditionally stable co-existence point, both locally and globally. One of the interesting phenomena is the occurrence of Hopf bifurcation driven by the order of derivative. Finally, the numerical simulations are given to validate previous theoretical results.

Page 1 of 1 | Total Record : 5