Claim Missing Document
Check
Articles

Found 18 Documents
Search

Analisis Kestabilan Model Eko-Epidemiologi dengan Pemanenan Konstan pada Predator Nurhalis Hasan; Resmawan Resmawan; Emli Rahmi
Jurnal Matematika, Statistika dan Komputasi Vol. 16 No. 2 (2020): JMSK, JANUARY, 2020
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (841.889 KB) | DOI: 10.20956/jmsk.v16i2.7317

Abstract

Penelitian ini dilakukan untuk menganalisis kestabilan model eko-epidemiologi dengan pemanenan konstan terhadap predator. Populasi dalam model terbagi atas tiga populasi yaitu populasi prey rentan  populasi prey terinfeksi , dan populasi predator . Dikonstruksi model eko-epidemiologi dengan pemanenan konstan terhadap predator. Diperoleh dua titik kesetimbangan, yaitu titik kesetimbangan kepunahan populasi prey terinfeksi, dan titik kesetimbangan interior atau semua populasi ada. Eksistensi dari masing-masing titik kesetimbangan bergantung pada  atau akar-akar realnya masing-masing. Sebelum mencari kestabilan dari titik-titk kestimbangan, ditentukan terlebih dahulu matriks Jacobi. Kestabilan dari masing-masing titik diuraikan pada syarat kestabilannya masing-masing. Simulasi numerik dari titik kesetimbangan dilakukan agar terlihat lebih jelas kestabilan dari masing-masing titik kesetimbangan. Simulasi numerik dilakukan menggunakan metode Runge-Kutta orde 4 dan dibantu software Phyton 3.7.
The Influence of Additive Allee Effect and Periodic Harvesting to the Dynamics of Leslie-Gower Predator-Prey Model Hasan S. Panigoro; Emli Rahmi; Novianita Achmad; Sri Lestari Mahmud
Jambura Journal of Mathematics Vol 2, No 2: Juli 2020
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (504.111 KB) | DOI: 10.34312/jjom.v2i2.4566

Abstract

In this paper, the influence of additive Allee effect in prey and periodic harvesting in predator to the dynamics of the Leslie-Gower predator-prey model is proposed. We first simplify the model to the non-dimensional system by scaling the variable and transform the model into an autonomous system. If the effect Allee is weak, we have at most two equilibrium points, else if the Allee effect is strong, at most four equilibrium points may exist. Furthermore, the behavior of the system around equilibrium points is investigated. In the end, we give numerical simulations to support theoretical results.
The Dynamics of a Discrete Fractional-Order Logistic Growth Model with Infectious Disease Hasan S Panigoro; Emli Rahmi
Contemporary Mathematics and Applications (ConMathA) Vol. 3 No. 1 (2021)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v3i1.26938

Abstract

In this paper, we study the dynamics of a discrete fractional-order logistic growth model with infectious disease. We obtain the discrete model by applying the piecewise constant arguments to the fractional-order model. This model contains three fixed points namely the origin point, the disease-free point, and the endemic point. We confirm that the origin point is always exists and unstable, the disease-free point is always exists and conditionally stable, and the endemic point is conditionally exists and stable. We also investigate the existence of forward, period-doubling, and Neimark-Sacker bifurcation. The numerical simulations are also presented to confirm the analytical results. We also show numerically the existence of period-3 solution which leads to the occurrence of chaotic behavior.
Bifurkasi Periode Ganda dan Neimark-Sacker pada Model Diskret Leslie-Gower dengan Fungsi Respon Ratio-Dependent Reza Mokodompit; Nurwan Nurwan; Emli Rahmi
Limits: Journal of Mathematics and Its Applications Vol 17, No 1 (2020)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v17i1.6809

Abstract

Dinamika model Leslie-Gower dengan fungsi respon ratio-dependent yang didiskretisasi menggunakan skema Euler maju adalah fokus utama pada artikel ini. Analisis diawali dengan mengidentifikasi eksistensi dari titik ekuilibrium dan kestabilan lokalnya. Diperoleh empat titik ekuilibrium yaitu titik kepunahan kedua populasi dan titik kepunahan predator yang selalu tidak stabil, dan titik kepunahan prey dan eksistensi kedua populasi yang stabil kondisional. Selanjutnya dipelajari eksistensi dari bifurkasi periode ganda dan Neimark-Sacker di sekitar titik eksistensi kedua populasi sebagai akibat perubahan parameter h (time-step). Dari hasil analisis ditemukan bahwa bifurkasi periode ganda terjadi setelah melewati h=h_a atau h=h_c dan bifurkasi Neimark-Sacker terjadi setelah melewati h=hb. Di akhir pembahasan, diberikan simulasi numerik yang mendukung hasil analisis sebelumnya.
Analisis dinamik model predator-prey tipe Gause dengan wabah penyakit pada prey Rusdianto Ibrahim; Lailany Yahya; Emli Rahmi; Resmawan Resmawan
Jambura Journal of Biomathematics (JJBM) Volume 2, Issue 1: June 2021
Publisher : Department of Mathematics, State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v2i1.10363

Abstract

This article studies the dynamics of a Gause-type predator-prey model with infectious disease in the prey. The constructed model is a deterministic model which assumes the prey is divided into two compartments i.e. susceptible prey and infected prey, and both of them are hunted by predator bilinearly. It is investigated that there exist five biological equilibrium points such as all population extinction point, infected prey and predator extinction point, infected prey extinction point, predator extinction point, and co-existence point. We find that all population extinction point always unstable while others are conditionally locally asymptotically stable. Numerical simulations, as well as the phase portraits, are given to support the analytical results.
Analisis dinamik model SVEIR pada penyebaran penyakit campak Sitty Oriza Sativa Putri Ahaya; Emli Rahmi; Nurwan Nurwan
Jambura Journal of Biomathematics (JJBM) Volume 1, Issue 2: December 2020
Publisher : Department of Mathematics, State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v1i2.8482

Abstract

In this article, we analyze the dynamics of measles transmission model with vaccination via an SVEIR epidemic model. The total population is divided into five compartments, namely the Susceptible, Vaccinated, Exposed, Infected, and Recovered populations. Firstly, we determine the equilibrium points and their local asymptotically stability properties presented by the basic reproduction number R0. It is found that the disease free equilibrium point is locally asymptotically stable if satisfies R01 and the endemic equilibrium point is locally asymptotically stable when R01. We also show the existence of forward bifurcation driven by some parameters that influence the basic reproduction number R0 i.e., the infection rate α or proportion of vaccinated individuals θ. Lastly, some numerical simulations are performed to support our analytical results.
Computational dynamics of a Lotka-Volterra Model with additive Allee effect based on Atangana-Baleanu fractional derivative Hasan S. Panigoro; Emli Rahmi
Jambura Journal of Biomathematics (JJBM) Volume 2, Issue 2: December 2021
Publisher : Department of Mathematics, State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v2i2.11886

Abstract

This paper studies an interaction between one prey and one predator following Lotka-Volterra model with additive Allee effect in predator. The Atangana-Baleanu fractional-order derivative is used for the operator. Since the theoretical ways to investigate the model using this operator are limited, the dynamical behaviors are identified numerically. By simulations, the influence of the order of the derivative on the dynamical behaviors is given. The numerical results show that the order of the derivative may impact the convergence rate, the occurrence of Hopf bifurcation, and the evolution of the diameter of the limit-cycle.
Global stability of a fractional-order logistic growth model with infectious disease Hasan S. Panigoro; Emli Rahmi
Jambura Journal of Biomathematics (JJBM) Volume 1, Issue 2: December 2020
Publisher : Department of Mathematics, State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v1i2.8135

Abstract

Infectious disease has an influence on the density of a population. In this paper, a fractional-order logistic growth model with infectious disease is formulated. The population grows logistically and divided into two compartments i.e. susceptible and infected populations. We start by investigating the existence, uniqueness, non-negativity, and boundedness of solutions. Furthermore, we show that the model has three equilibrium points namely the population extinction point, the disease-free point, and the endemic point. The population extinction point is always a saddle point while others are conditionally asymptotically stable. For the non-trivial equilibrium points, we successfully show that the local and global asymptotic stability have the similar properties. Especially, when the endemic point exists, it is always globally asymptotically stable. We also show the existence of forward bifurcation in our model. We portray some numerical simulations consist of the phase portraits, time series, and a bifurcation diagram to validate the analytical findings.
Analisis Kestabilan Model Predator-Prey dengan Infeksi Penyakit pada Prey dan Pemanenan Proporsional pada Predator Siti Maisaroh; Resmawan Resmawan; Emli Rahmi
Jambura Journal of Biomathematics (JJBM) Volume 1, Issue 1: June 2020
Publisher : Department of Mathematics, State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v1i1.5948

Abstract

The dynamics of predator-prey model with infectious disease in prey and harvesting in predator is studied. Prey is divided into two compartments i.e the susceptible prey and the infected prey. This model has five equilibrium points namely the all population extinction point, the infected prey and predator extinction point, the infected prey extinction point, and the co-existence point. We show that all population extinction point is a saddle point and therefore this condition will never be attained, while the other equilibrium points are conditionally stable. In the end, to support analytical results, the numerical simulations are given by using the fourth-order Runge-Kutta method.
The existence of Neimark-Sacker bifurcation on a discrete-time SIS-Epidemic model incorporating logistic growth and allee effect Amelia Tri Rahma Sidik; Hasan S. Panigoro; Resmawan Resmawan; Emli Rahmi
Jambura Journal of Biomathematics (JJBM) Volume 3, Issue 2: December 2022
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v3i2.17515

Abstract

This article investigates the dynamical properties of a discrete time SIS-Epidemic model incorporating logistic growth rate and Allee effect. The forward Euler discretization method is employed to obtain the discrete-time model. All possible fixed points are identified including their local dynamics. Some numerical simulations by varying the step size parameter are explored to show the analytical findings, the existence of Neimark-Sacker bifurcation, and the occurrence of period-10 and 20 orbits