cover
Contact Name
Resmawan
Contact Email
resmawan@ung.ac.id
Phone
+6285255230451
Journal Mail Official
editorial.jjbm@ung.ac.id
Editorial Address
Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96119, Gorontalo, Indonesia
Location
Kota gorontalo,
Gorontalo
INDONESIA
Jambura Journal of Biomathematics (JJBM)
ISSN : -     EISSN : 27230317     DOI : https://doi.org/10.34312/jjbm.v1i1
Core Subject : Science, Education,
Jambura Journal of Biomathematics (JJBM) aims to become the leading journal in Southeast Asia in presenting original research articles and review papers about a mathematical approach to explain biological phenomena. JJBM will accept high-quality article utilizing mathematical analysis to gain biological understanding in the fields of, but not restricted to Ecology Oncology Neurobiology Cell biology Biostatistics Bioinformatics Bio-engineering Infectious diseases Renewable biological resource Genetics and population genetics
Articles 5 Documents
Search results for , issue "Volume 2, Issue 1: June 2021" : 5 Documents clear
Analisis dinamik model predator-prey tipe Gause dengan wabah penyakit pada prey Ibrahim, Rusdianto; Yahya, Lailany; Rahmi, Emli; Resmawan, Resmawan
Jambura Journal of Biomathematics (JJBM) Volume 2, Issue 1: June 2021
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v2i1.10363

Abstract

This article studies the dynamics of a Gause-type predator-prey model with infectious disease in the prey. The constructed model is a deterministic model which assumes the prey is divided into two compartments i.e. susceptible prey and infected prey, and both of them are hunted by predator bilinearly. It is investigated that there exist five biological equilibrium points such as all population extinction point, infected prey and predator extinction point, infected prey extinction point, predator extinction point, and co-existence point. We find that all population extinction point always unstable while others are conditionally locally asymptotically stable. Numerical simulations, as well as the phase portraits, are given to support the analytical results.
Analisis kestabilan dan kontrol optimal model matematika penyebaran penyakit Ebola dengan variabel kontrol berupa karantina Megananda, Erzalina Ayu Satya; Alfiniyah, Cicik; Miswanto, Miswanto
Jambura Journal of Biomathematics (JJBM) Volume 2, Issue 1: June 2021
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v2i1.10258

Abstract

Ebola disease is an infectious disease caused by a virus from the genus Ebolavirus and the family Filoviridae. Ebola disease is one of the most deadly diseases for human. The purpose of the thesis is to analyze the stability of the equilibrium point and to apply the optimal control of quarantine on a mathematical model of the spread of ebola. Model without control has two equilibria, non-endemic equilibrium and endemic equilibrium. The existence of endemic equilibrium and local stability depends on the basic reproduction number (R0). The non-endemic equilibrium is asymptotically stable if R0 1 and endemic equilibrium tend to asymptotically stable if R0 1. The problem of optimal control is solved by Pontryagin's Maximum Principle. From the numerical simulation, the result shows that control is effective enough to minimize the number of infected human population and to minimize the cost of its control.
Dynamics of a stage–structure Rosenzweig–MacArthur model with linear harvesting in prey and cannibalism in predator Beay, Lazarus Kalvein; Saija, Maryone
Jambura Journal of Biomathematics (JJBM) Volume 2, Issue 1: June 2021
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v2i1.10470

Abstract

A kind of stage-structure Rosenzweig–MacArthur model with linear harvesting in prey and cannibalism in predator is investigated in this paper. By analyzing the model, local stability of all possible equilibrium points is discussed. Moreover, the model undergoes a Hopf–bifurcation around the interior equilibrium point. Numerical simulations are carried out to illustrate our main results.
Impact of predator fear on two competing prey species Mukherjee, Debasis
Jambura Journal of Biomathematics (JJBM) Volume 2, Issue 1: June 2021
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v2i1.9249

Abstract

Predator-prey interaction is a fundamental feature in the ecological system. The majority of studies have addressed how competition and predation affect species coexistence. Recent field studies on vertebrate has shown that fear of predators can influence the behavioural pattern of prey populations and reduce their reproduction. A natural question arises whether species coexistence is still possible or not when predator induce fear on competing species. Based on the above observation, we propose a mathematical model of two competing prey-one predator system with the cost of fear that affect not only the reproduction rate of both the prey population but also the predation rate of predator. To make the model more realistic, we incorporate intraspecific competition within the predator population. Biological justification of the model is shown through positivity and boundedness of solutions. Existence andstability of different boundary equilibria are discussed. Condition for the existence of coexistence equilibrium point is derived from showing uniform persistence. Local as well as a global stability criterion is developed. Bifurcation analysis is performed by choosing the fear effect as the bifurcation parameter of the model system. The nature of the limit cycle emerging through a Hopf bifurcation is indicated. Numerical experiments are carried out to test the theoretical results obtained from this model.
Estimasi Reproduction Number Model Matematika Penyebaran Malaria di Sumba Tengah, Indonesia Banni, Ervin Mawo; Kleden, Maria A; Lobo, Maria; Ndii, Meksianis Zadrak
Jambura Journal of Biomathematics (JJBM) Volume 2, Issue 1: June 2021
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v2i1.9971

Abstract

Malaria is transmitted via a bite of mosquitoes and it is dangerous if it is not properly treated. Mathematical modeling can be formulated to understand the disease transmission dynamics. In this paper, a mathematical model with an awareness program has been formulated and the reproduction number has been estimated against the data from Weeluri Health Center, Mamboro District, Central Sumba. The calculation showed that the reproduction number is R0 = 1.2562. Results showed that if the efficacy of the awareness program is lower than 20%, the reproduction number is still above unity. If the efficacy of the awareness program is higher than 20%, the reproduction number is lower than unity. This implies that the efficacy of awareness programs is the key to the success of Malaria eradication.

Page 1 of 1 | Total Record : 5