cover
Contact Name
Prof. Dr. Edy Saputra
Contact Email
jamt@eng.unri.ac.id
Phone
+628116902140
Journal Mail Official
jamt@eng.unri.ac.id
Editorial Address
Journal of Applied Materials and Technology Building C Room C209 Faculty of Engineering Universitas Riau Jl. Pekanbaru-Bangkinang KM 12.5 Pekanbaru, 28293
Location
Kota pekanbaru,
Riau
INDONESIA
Journal of Applied Materials and Technology
Published by Universitas Riau
ISSN : 2721446X     EISSN : 26860961     DOI : https://doi.org/10.31258/Jamt
Core Subject : Engineering,
Journal of Applied Materials and Technology (JAMT) is aimed at capturing current development and initiatives in applied materials and technology. JAMT showcases innovative applied materials and technology, providing an opportunity for science, transfer and collaboration of technology. JAMT focuses on the publication in the area of material science, material engineering and technology, renewable energy, sustainable material and construction method. The selected, high-quality reviews, research reports at the state of the art of the science and material technology are welcomed.
Articles 66 Documents
Optimization of Pelleting Parameters for Producing Composite Pellets Using Zeolitic Material From Fly Ash Denise Alves Fungaro; Tharcila Bertolini
Journal of Applied Materials and Technology Vol. 3 No. 2 (2022): March 2022
Publisher : AMTS and Faculty of Engineering - Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/Jamt.3.2.13-23

Abstract

Zeolitic material in powder form was prepared from fly ash by direct activation treatment. The resulted fly ash-based zeolite was pelletizing and the effect of different inorganic (calcium hydroxide, bentonite, kaolinite) and organic (dextrin) binders with varying percentage was investigated. The zeolitic materials were analyzed by XRF, XRD, SEM, FTIR, TG-DTG and Nitrogen adsorption/desorption isotherm. Compression and impact tests have been used to study the deformation and breakage behaviour of spherical granules. The best performance was obtained by zeolite granular containing 5 wt.% bentonite and 5 wt.% kaolinite with mechanical strength and satisfactory water resistance. The synthesis of pelletized zeolite from by-products derived from coal combustion provides not only environmental and economic benefits, but also contributes to achieving the principles of sustainable development.
Peroxymonosulfate activation using CoFe2O4/Fe2O3 nanocomposite for Acid Orange removal Mohamed Faisal Gasim; Qing-Sheng Gooi; Wen Da Oh
Journal of Applied Materials and Technology Vol. 3 No. 2 (2022): March 2022
Publisher : AMTS and Faculty of Engineering - Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/Jamt.3.2.34-43

Abstract

Herein, mixed–metal nanocomposite catalysts with various compositions (CoFe2O4/xFe2O3; x = 0, 0.25, 0.50, 0.75 and 1) were successfully fabricated by a co–precipitation method. The composition and morphology of the catalyst were systematically characterized. The catalyst with the highest Co content (CoFe2O4), exhibited the greatest efficiency for the acid orange 7 (AO7) degradation via peroxymonosulfate (PMS) activation. The effects of several experimental parameters including pH, CoFe2O4 loading, and PMS dosage on AO7 degradation were studied, and the catalytic activity was found to increase with the mentioned parameters. Moreover, CoFe2O4 displayed adequate reusability and was able to degrade AO7 for at least four consecutive cycles. In addition, the total organic carbon (TOC) removal of CoFe2O4 was determined while the catalyst stability was observed from the metal leaching in the treated solution. Furthermore, the magnetism of CoFe2O4 provides facile separation of the catalyst from the treated solution. Sulfate radicals (SO4•–) were identified as the main reactive species responsible for AO7 degradation.
Development of Cork-Bamboo-Latex as An Alternative Composite for Bottles Stoppers Alice Soares Brito; Leonardo Nader Chagas; Juarez Vicente; Ana Paula Duarte Moreira; Cristiane Hess de Azevedo Meleiro; Harrison Lourenço Corrêa; Alexandre Miguel do Nascimento; Renata Nunes Oliveira
Journal of Applied Materials and Technology Vol. 4 No. 1 (2022): September 2022
Publisher : AMTS and Faculty of Engineering - Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/Jamt.4.1.11-17

Abstract

Agglomerated cork composites production has been arising as an alternative eco-friendly to cork stoppers use and attracts interest to create sustainable products and materials. A cork-bamboo-latex composite was developed by compression-molding and the interaction between three composite interfaces as well as their mechanical properties were evaluated by density measure, immersion test, FTIR, compression test, and microbial analysis aiming to produce an alternative material to wine closures. The results obtained were compared between the composite produced and the commercial agglomerated cork stoppers. It was possible to observe that the cork-bamboo-latex composite produced exhibited a good adhesion of all components and similar characteristics. However, it presented a slight increase in the density (from 0.37 g/cm3 to 0.65 g/cm3) and Young's modulus (from 0.033 MPa to 0.037 MPa) producing a stiffer material mainly due to bamboo presence. The migration of the stopper components (cork, bamboo, or latex) for the wine was not detected, as well as there was no visible interaction between wine and composite. In this work, the cork-bamboo-latex stopper fabricated presents a potential application as an alternative material to wine stoppers and stimulates the production of a sustainable material.
Improvements in Physical and Mechanical Properties of Asphalt by Addition of Low-cost Few-layers Graphene (FLG) Amun Amri; M. Sugandi; Syelvia Putri Utami; Muhammad Shalahuddin; Sulistyo Saputro
Journal of Applied Materials and Technology Vol. 4 No. 1 (2022): September 2022
Publisher : AMTS and Faculty of Engineering - Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/Jamt.4.1.18-23

Abstract

Physical and mechanical properties of asphalt have been improved by adding of few-layers graphene (FLG). FLG was obtained from a simple, low-cost and environmentally friendly liquid shear exfoliation method using a kitchen blender. The melted asphalt at temperature of 150oC was mixed with FLG at various concentrations (10 mg/ml, 20 mg/ml and 30 mg/ml) and contents (0 wt%, 3 wt%, 6 wt%, and 9 wt%) by weight of asphalt. The homogenized mixture was taken for penetration and softening point tests, while the mixing with aggregates was carried out for Marshall stability and asphalt concrete flow tests. The characteristics of void in mixture (VIM), void filled with asphalt (VFA), and void in mineral aggregate (VMA) were also investigated. The penetration values decreased (or the asphalt hardness increased) linearly with increasing of FLG concentration and FLG content. The softening point of asphalt increased as the increasing of FLG concentration and FLG content in asphalt with the average softening point increase of about 5%. The Marshall stability and asphalt concrete flow increased with increasing of FLG concentrations and FLG content. However, the addition of FLG did not affect the VIM, VFA or VMA values. Overall, the addition of FLG improves the physical and mechanical properties of asphalt and has promising prospects due to low-cost and eco-friendly nature of FLG.
Failure Analysis of High-Pressure Turbine Blades in Steam Power Plants Anggit Aji Purnomo; Sunaryo Sunaryo; Ahmad Kafrawi Nasution
Journal of Applied Materials and Technology Vol. 4 No. 1 (2022): September 2022
Publisher : AMTS and Faculty of Engineering - Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/Jamt.4.1.24-33

Abstract

This paper describes the failure of high-pressure steam turbine blades. During the Serious Inspection, it was discovered that the ninth-stage high-pressure turbine blade had failed. The causes of blade failure are examined via visual inspection and destructive testing. The failure mechanism of the blades was determined by conducting mechanical properties testing, metallographic inspection, and energy spectrum analysis. The mechanical properties of the leaf and root blade specimens were within the range of blade steel for steam turbines according to the Chinese National Standard (GB/T 8732-2004), but the chemical composition was not identical. This is consistent with the root blade fracture pattern where the hardness value plotted from the test results is the lowest at the root blade location, which is the primary cause of fissure propagation.
Speed Control of Three Phase Induction Motor using PI Controller with Space Vector Width Modulation (SVPWM) Technique Iswadi Hasyim Rosma; Amir Hamzah; A. Ludfi Nur Kasan; Abubakar Abdulkarim; Sobhy Abdelkader
Journal of Applied Materials and Technology Vol. 4 No. 1 (2022): September 2022
Publisher : AMTS and Faculty of Engineering - Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/Jamt.4.1.34-41

Abstract

This article aimed to design and simulated the speed control of a three-phase induction motor using a PI controller with Space Vector Pulse width modulation technique. The induction motor  used in this article is was designed at the Electrical Energy Conversion Laboratory, Riau University, with a power of 1.1 kW, 380 V, 2-pole. Meanwhile, the PI controller constants used in designing this induction motor were determined using the Fine Tunning method to obtain KP and KI values of 3.539 and 9.526, respectively. The tests were carried out by running simulations in three conditions, namely no load, full load, and variable load at a speed of 2800 rpm. The test results showed that the use of a PI controller can improve the speed response of induction motors by eliminating the steady state error. This is in addition to increasing the rise time response of the motor speed by 0.012s and 0.046s at no load and full load, respectively, when the rise time analysis is at the same value. It can also accelerate the motor to reach a peak speed of 0.247 s and 0.166s at no load and full load. In addition, SPVWM with PI controller can maintain speed setting even though there is a load change during operation, which can be verified with load testing.
Energy Router Applications in the Electric Power System Umar, Bashir Musa; Jibril, Yusuf; Jimoh, Boyi; Bala Kunya, Abdullahi; Aliyu, Safiya
Journal of Applied Materials and Technology Vol. 4 No. 2 (2023): March 2023
Publisher : Faculty of Engineering Universitas Riau and Applied Materials and Technology Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/Jamt.4.2.56-68

Abstract

Energy router is being investigated to replace conventional transformer in the electric grid. Improvement so far observed in use of converter makes possible the intelligent integration between systems with different characteristics’ in terms of frequency and voltage levels as well as exploitation of generation sources and storage systems typically operating in DC. Consequently, it is believed that Energy Router is able to interconnect different portions of electrical networks and at different voltage levels and types. The Energy Router is an assembly of converters isolated by a medium or high frequency transformer. In its design, different voltage levels and types are made available to achieve high results in terms of system integration, efficiency and flexibility. This paper evaluates the main potentials of this technology if widely introduced in the main power system. Starting from the single component description, a couple of possible applications are presented and discussed.
Various Methods of Strengthening Reinforced Concrete Beam-Column Joint Subjected Earthquake-Type Loading Using Fibre-Reinforced Polymers: A Critical Review Ridwan, Ridwan; Jemaa, Yaser; Yuniarto, Enno
Journal of Applied Materials and Technology Vol. 4 No. 2 (2023): March 2023
Publisher : Faculty of Engineering Universitas Riau and Applied Materials and Technology Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/Jamt.4.2.42-55

Abstract

Fibre-reinforced polymer (FRP) composites are extensively employed in concrete technology due to their exceptional mechanical strength and durability.  They serve a dual purpose, not only reinforcing damaged elements but also supporting heavier service loads and addressing long-term concerns in new infrastructure projects. Consequently, the objective of this review is to establish a comprehensive research database that focuses on evaluating the strengthening behaviour of reinforced concrete (RC) beam-column joints (BCJ) under earthquake loads through diverse types and application methods of FRP composites. The efficacy of these strengthening techniques is assessed by considering factors such as the loading capacity and dissipated energy of RC BCJ versus the joint confinement index provided by the fibre in the joint area. Through this state-of-the-art review, it becomes evident that FRP composites effectively enhanced the normalized load of specimens up to 27 kN/?MPa and enhanced the dissipated energy until 558.6 kN-mm for the case of specimens with a lower confinement index, less than 0.3. Additionally, the specimen strengthened with the deep embedment (DE) method resulted in a moderate normalized load and dissipated energy compared to those strengthened with the external bonded (EB) method. The test results indicated that the average normalized load and dissipated energy of the DE-strengthening method was 93% and 28.5% compared to that of the EB-strengthening method. These findings reveal that FRP composites offer distinct advantages in terms of load capacity and dissipated energy when used for strengthening earthquake-affected RC BCJ. Finally, based on the compilation of the previous works, this research proposes several techniques for utilizing FRP composites to enhance RC BCJ subjected to earthquake load.
The Flue Gas Desulfurization Gypsum Applications in Production of Eco-Friendly Cementitious Matrices Bibiano, R. H. N.; Izidoro, Juliana de Carvalho; Fungaro, Denise Alves
Journal of Applied Materials and Technology Vol. 4 No. 2 (2023): March 2023
Publisher : Faculty of Engineering Universitas Riau and Applied Materials and Technology Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/Jamt.4.2.69-78

Abstract

Portland cement is one of the most manufactured materials in the world. The worldwide cement industry accounts for at least 5-8% of the anthropogenic CO2 emissions and therefore is an important sector for CO2-emission mitigation strategies to limit global warming. One of the strategies for reducing the carbon footprint of the cement industry is replace traditional Portland cement with other solid wastes. In the present study, the influence of the application of flue gas desulfurization gypsum (FGD gypsum) generated from coal-fired power plant in construction mortar was investigated. Cylindrical specimens were molded with Portland cement type CPII-F 32, sand and 0%, 25%, 50% and 75% amounts of FGD gypsum. After curing time of 1, 3, 7, 28 and 91 days, the cementitious materials were characterized mechanically by axial compressive strength, setting time and slump. The pastes in the age of 28 days were further characterized by X-ray diffraction with Rietveld analysis. Results showed that FGD gypsum can be used as a substitute for cement as a setting retarder in an amount of up to 25%, and as an accelerator in an amount of 75%, being necessary dosage of the specific traces of the materials depending on the purpose of its use.
Hydrocarbon-Impacted Soils Supported Mn for Organic Pollutant Oxidation Saputra, Edy; Fadli, Ahmad; Prawiranegara, Barata Aditya; Amri, Amun; Heltina, Desi; Bahri, Syaiful; Sandhyavitri, Ari; Restuhadi, Fajar; Abid, Hussein Rasool; Azhar, Muhammad Rizwan; Utama, Panca Setia
Journal of Applied Materials and Technology Vol. 4 No. 2 (2023): March 2023
Publisher : Faculty of Engineering Universitas Riau and Applied Materials and Technology Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/Jamt.4.2.90-98

Abstract

Hydrocarbon-impeded soil (HIS) is solid waste from spills or leaks during industrial activities that negatively impact the environment. This study aims to utilize HIS as catalyst support on MnO2 to degrade RhB (RhB) solution using Peroxymonosulfate (PMS) and to determine the optimum conditions for the catalyst to degrade RhB. The catalyst was synthesized by reacting HIS, calcined with KMnO4 with various catalyst supports with high and low Total contain Petroleum Hydrocarbon (TPH). The process degradation of Rhodamine Solution was carried out with various catalysts, PMS, and RhB concentrations. The catalyst was characterized using X-ray diffraction (XRD), Nitrogen gas adsorption-desorption (BET), and Scanning Electron Microscope-Energy Disperse Spectroscope (SEM-EDX). In this study,  the best catalyst performance was MnO2@H-TPH, which could activate PMS to degrade RhB with dye removal of 98% in about 180 min, at conditions 10 g/L RhB, 0.1 g/L catalyst, and 3 g/L PMS with the activation energy of 16.3 kJ/mol.