cover
Contact Name
-
Contact Email
coscitech@umri.ac.id
Phone
+6285225539224
Journal Mail Official
coscitech@umri.ac.id
Editorial Address
Program Studi Teknik Informatika Fakultas Ilmu Komputer Gedung Rektorat Lt. 4, Universitas Muhammadiyah Riau Jl. Tuanku Tambusai, Pekanbaru, Riau
Location
Kota pekanbaru,
Riau
INDONESIA
Jurnal Computer Science and Information Technology (CoSciTech)
ISSN : 2723567X     EISSN : 27235661     DOI : https://doi.org/10.37859/coscitech
Core Subject : Science,
Jurnal CoSciTech (Computer Science and Information Technology) merupakan jurnal peer-review yang diterbitkan oleh Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Univeritas Muhammadiyah Riau (UMRI) sejak April tahun 2020. Jurnal CoSciTech terdaftar pada PDII LIPI dengan Nomor ISSN 2723-5661 (Online) dan 2723-567X (Cetak). Jurnal CoSciTech berkomitmen menjadi jurnal nasional terbaik untuk publikasi hasil penelitian yang berkualitas dan menjadi rujukan bagi para peneliti. Jurnal CoSciTech menerbitkan paper secara berkala dua kali setahun yaitu pada bulan April dan Oktober. Semua publikasi di jurnal CoSciTech bersifat terbuka yang memungkinkan artikel tersedia secara bebas online tanpa berlangganan.
Articles 358 Documents
Implementasi Deep Learning Untuk Identifikasi Tanaman Rimpang Menggunakan Metode Convolutional Neural Network Mahendri, Diffa Rahmanda Putra; T. Yudi Hadiwandra
Computer Science and Information Technology Vol 6 No 1 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i1.8943

Abstract

Rhizome plants are spices widely used by Indonesian people as cooking ingredients or traditional medicine. These plants havesimilar appearances, making them difficult to distinguish for some people. Errors in identifying rhizome plants can lead topoisoning, allergies, or unwanted side effects. To simplify identifying these plants, a system is needed to detect and differentiatetypes of rhizome plants, which can be achieved using Convolutional Neural Networks (CNN) with the YOLO algorithm. CNN isa Machine Learning technique capable of identifying objects based on their visual features, enabling efficient differentiation ofrhizome plants. The image dataset used is divided into six classes, with a total of 700 images. Model testing produced resultswith a precision of 98%, recall of 99%, and mAP50-95 of 96%. Future research is expected to increase dataset variety to avoidoverfitting.
Pemanfaatan Artificial Intelligence Bagi Dunia Pendidikan Di Era Society 5.0: Utilization of Artificial Intelligence for the World of Education in the Era of Society 5.0 Dara Sawitri
Computer Science and Information Technology Vol 6 No 1 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i1.8968

Abstract

The development of digital technology in the Society 5.0 era has had an impact on significant changes in various aspects of life, including education. Artificial Intelligence (AI) has become an innovative technology that plays an important role in increasing the success and effectiveness of learning. Where artificial intelligence makes it possible for individual and distance learning, digitalization of education administration, and the assessment process to become faster, objective and more efficient. The existence of artificial intelligence brings students a more participatory learning experience. For educators, artificial intelligence makes it easy to provide references and learning resources that are aligned to the individual needs of students. Artificial intelligence has a moderate role in creating a more responsive, effective and personalized learning system. However, the application of artificial intelligence for education also has challenges, especially in remote areas, such as the availability of facilities and infrastructure, data management ethics, as well as the spread of technology in the form of fast internet access and understanding digital literacy. In the Society 5.0 era, artificial intelligence technology has provided many opportunities to improve the quality of learning. With artificial intelligence, more personal methods can be applied that actively discuss and contribute based on technology. With artificial intelligence in the era of society 5.0, it is hoped that the education system will be more flexible so that it can adapt its methods and curriculum to existing needs and developments in order to create highly skilled and professional human resources.
Implementasi Access Control List (ACL) Sebagai Metode Proteksi dan Traffic Control Pada Infrastruktur Jaringan Local Area Network (LAN) Miftahur Rahman; Moh. Dasuki
Computer Science and Information Technology Vol 6 No 1 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i1.9102

Abstract

PT. Hidatech Indonesia merupakan salah satu perusahaan di Kabupaten Jember yang berjalan di bidang teknologi yaitu menyediakan layanan kursus, pelatihan, pembuatan software, dan penjualan hardware. Infrastruktur jaringan pada perusahaan tersebut kerap mengalami penyerangan cyber seperti jaringan trouble, server down, dan gangunan operasional lainnya. Hal ini disebabkan banyaknya user yang mengakses jaringan tersebut tanpa adanya proteksi dan kontrol lalu lintas jaringan. Oleh sebab itu, dibutuhkan strategi untuk memproteksi atau melindungi dan mengkontrol traffic jaringan komputer dari serangan siber, salah satu strateginya adalah dengan menerapkan Access Control List (ACL). Adapun tahapan atau metode penelitian yang dilakukan pada penelitian ini meliputi pengumpulan data, desain, implementasi, dan pengujian. Menghasilkan penelitian bahwa Jaringan divisi ruang pimpinan (192.168.10.0) dapat mengakses server FTP (192.168.50.20) maupun server Web (192.168.50.20). Jaringan divisi ruang pemasaran (192.168.20.0) hanya diijinkan akses server Web (192.168.50.20). Jaringan divisi soft. development (192.168.30.0) dan divisi course pelatihan (192.168.40.0) tidak diijinkan mengakses keduanya server Web dan server FTP, sementara divisi server memiliki akses penuh ke semua divisi didalam jaringan tersebut dengan persentase keberhasilannya adalah 100%. Dari hasil penelitian ini diharapkan dapat diterapkan terhadap jaringan riil sebagai keamanan dan kontrol lalu lintas pada jaringan di PT. Hidatech.
SISTEM PENDUKUNG KEPUTUSAN UNTUK OPTIMALISASI PEMILIHAN BIBIT PADI TERBAIK MENGGUNAKAN METODE MOORA Syawali, Yusfi; Niska, Debi Yandra; Rangkuti, Muhammad Haikal Hafiz; Mayadi, Kaka Aprianda
Computer Science and Information Technology Vol 6 No 1 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i1.9104

Abstract

This study aims to develop a Decision Support System (DSS) based on the Multi-Objective Optimization on the Basis of Ratio Analysis (MOORA) method to assist farmers in selecting the best rice seeds in a systematic, objective, and data-driven manner. The case study was conducted in Cengkeh Turi Subdistrict, Binjai City, considering ten key criteria such as productivity, pest resistance, grain quality, and seed availability in the market. A quantitative-descriptive approach was used, with data obtained from field observations, interviews, documentation, and relevant literature. The system was built using Python and the Streamlit framework to create an interactive web-based application. The MOORA calculation results showed that the Sidenok (Rambutan) rice variety achieved the highest optimization score (Yi) of 0.2127. The system not only provides accurate technical recommendations but also helps farmers understand the selection process through a user-friendly interface and clear visualizations. System validation showed consistency between manual and system-generated calculations, and local farmers provided positive feedback on usability and result reliability. These findings demonstrate the effectiveness of the MOORA method in local agricultural decision-making and highlight its potential for further development through the integration of climate-based predictive features. The system is expected to contribute to precision agriculture innovation and support sustainable national food security efforts.
KLASIFIKASI JENIS TANAMAN ALPUKAT BERDASARKAN BENTUK DAUN MENGGUNAKAN ALGORITMA CNN Pratama, Agum; Tito Sugiharto; Panji Novantara
Computer Science and Information Technology Vol 6 No 2 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i2.9474

Abstract

The avocado plants is a popular horticultural commodities in Indonesia, especially in Java, due to their health benefits and high economic value. However, differences in leaf shape across avocado varieties often make identification difficult for both buyers and sellers, which can lead to transaction errors and losses. Manual identification requires specialised skills that are not always available, especially in areas such as Kuningan Regency. To answer these problems, this research aims to develop an Android-based application that is able to classify avocado varieties, namely alligator, kendil, and butter, based on leaf images automatically. This application uses Convolutional Neural Network (CNN) algorithm with SSDMobileNetV2 FPNLite pre-trained model implemented through TensorFlow framework. The dataset used consists of 4,800 avocado leaf images divided for training, validation, and testing processes. The test results show that the model is able to achieve an accuracy rate of 99%. For the alligator class, the precision and recall values were 1.00 and 0.98 respectively; for the kendil class, 1.00 and 0.99; and for the butter class, 0.99 and 1.00. These findings prove that the CNN algorithm is effective in classifying avocado varieties based on visual characteristics of the leaves. Thus, this application has the potential to become a fast, accurate, and practical tool in the process of identifying avocado varieties, both for commercial and educational purposes.
Rancang Bangun Sistem Informasi Pimpinan Daerah 114 Tapak Suci Putera Muhammadiyah Pekanbaru Menggunakan Model Waterfall Pratama Yudha, Muhammad Ryan; Rahmad Al Rian; Melly Novalia
Computer Science and Information Technology Vol 6 No 2 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i2.9548

Abstract

In Tapak Suci, particularly in the Pekanbaru region, the organizational leadership structure in Indonesia comprises four levels: the school (perguruan), branch leadership (pimpinan cabang), regional leadership (pimpinan daerah), provincial leadership (pimpinan wilayah), and central leadership (pimpinan pusat). Currently, the management of member data, ranking data, and other related information is still conducted manually. This process is often time-consuming, inaccurate, and difficult to retrieve. Consequently, the organization's management faces challenges in obtaining fast and accurate information to support decision-making. Furthermore, manual data management is prone to human error and data loss.Information system technology offers a potential solution to these challenges. This research uses a Research and Development (R&D) methodology by using an integrated information system to enable more efficient, accurate, and structured data and information management. The development process adheres to the Waterfall paradigm, which comprises the phases of system design and requirement analysis., coding, testing, and system maintenance.The result of this research is a web-based information system for managing the activities of 114 Regional Leaderships (Pimpinan Daerah) of Putera Muhammadiyah. This data management system is designed for two types of users: PIMDA administrators and Branch administrators. The information system is expected to improve the efficiency of organizational management.
Implementasi Algoritma XGBoost Untuk Prediksi Capaian Bulanan Pendapatan Daerah Kota Bandung Marchanda Izzati, Puteri; Fitriyani
Computer Science and Information Technology Vol 6 No 2 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i2.9578

Abstract

Abstract Local Own-Source Revenue (PAD) is a key pillar in financing regional development. In Bandung City, discrepancies between revenue targets and actual realization remain a challenge to effective fiscal planning. This study aims to develop a predictive model for monthly PAD achievement using the XGBoost algorithm, known for its strength in handling non-linear and complex data. The dataset, obtained from the Bandung Revenue Agency (Bapenda), includes various types of regional taxes from 2018 to 2024. The research process involved data cleaning, feature engineering, data splitting, model training, and performance evaluation using MAE, RMSE, and R² metrics. The evaluation on test data resulted in MAE of IDR 5.6 billion, RMSE of IDR 9.3 billion, and R² of 73%. Meanwhile, 5-fold cross-validation yielded MAE of IDR 3.49 billion, RMSE of IDR 6.65 billion, and R² of 86%. These results demonstrate high accuracy and generalization capability. XGBoost proves to be a reliable decision-support tool for data-driven fiscal planning.
Jurnal Rancang Bangun Sistem Informasi Reseller Dengan Pendekatan Customer Relationship Management Berbasis Web Ruri Mutiara Ayuni; Nugraha, Nugraha; Anggun Fergina
Computer Science and Information Technology Vol 6 No 2 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i2.9621

Abstract

This study aims to design and implement a web-based reseller information system at Mutiara Cell with a Customer Relationship Management (CRM) approach to answer the needs of digital transformation in improving operational efficiency and managing business relationships. Mutiara Cell is a company that distributes electric credit and digital products that involves many reseller partners, but still faces obstacles in recording transactions, managing data, and reporting finances that are done manually. The system developed is designed to facilitate administrators and resellers in ordering products, uploading proof of payment, managing bills, and reporting sales digitally and in an integrated manner. The development uses a waterfall model with stages of needs analysis, design, implementation, and testing, and uses PHP Native as a programming language and Black Box Testing to ensure system functionality. The results show an increase in operational efficiency, data access speed, and accuracy in transaction management. In addition, the user-friendly interface supports convenience in accessing services, and the CRM approach has been proven to strengthen business relations and increase partner loyalty. This system is considered feasible to use and is a long-term digital solution in supporting operational activities and managing relationships with resellers more professionally.
Jurnal Pemanfaatan Tongkat Berbasis IoT dan Yolo V3 Untuk Meningkatkan Mobilitas dan Keamanan Penyandang Tunanetra Dava, Dava Febrian; Kamdan; Alamsyah, Zaenal
Computer Science and Information Technology Vol 6 No 2 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i2.9793

Abstract

Visually impaired individuals face significant challenges in mobility and safety during daily activities, especially in public spaces that are not disability-friendly. Conventional white canes are limited in their ability to detect obstacles. This study aims to design and implement a smart cane based on the Internet of Things (IoT) and the real-time object detection algorithm YOLO V3 to enhance the mobility and safety of visually impaired users. The developed system utilizes ultrasonic sensors to detect obstacles on the left and right sides of the user, a GPS module for real-time location tracking via a web server, and an ESP32-CAM integrated with YOLO V3 to detect objects such as vehicles, holes, and people. Information is conveyed to the user through voice alerts using a DFPlayer Mini and is also displayed on an LCD and a web interface. Test results show that the system operates accurately, with an average sensor error rate of only 0.12%, and all components function properly. Usability testing involving 50 respondents indicates a very high level of user satisfaction, with average agreement rates exceeding 85%. This research demonstrates that the integration of IoT and computer vision can produce a smart, responsive, and user-friendly assistive device for the visually impaired.
Implementasi Metode Prototype dalam Pengembangan Sistem Informasi Inventaris Obat di Apotek Syira Farma. Setia Gunawan, Vicky; Muhammad, Muhammad; Maria, Sinta
Computer Science and Information Technology Vol 6 No 2 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i2.9652

Abstract

Apotek Syira Farma merupakan sebuah entitas bisnis yang berdedikasi dalam penjualan serta penyediaan berbagai jenis obat-obatan untuk memenuhi kebutuhan kesehatan masyarakat. Apotek ini berperan penting sebagai salah satu fasilitas kesehatan primer yang menyediakan akses mudah terhadap produk farmasi yang aman dan berkualitas. Saat ini, Apotek Syira Farma masih mengandalkan sistem persediaan manual. Artinya, setiap hari para pegawai mencatat seluruh transaksi penjualan dan setiap pemasukan stok barang dari pemasok langsung ke dalam buku laporan persediaan. Kemudian, pimpinan apotek akan memeriksa laporan manual ini secara rutin setiap harinya untuk memantau pergerakan stok. Namun, sistem manual ini jauh dari kata efektif dan efisien. Pengelolaan persediaan secara manual sangat rentan terhadap berbagai kesalahan. Seringkali, terjadi ketidaksesuaian antara data yang tercatat dengan kondisi fisik barang, baik itu kesalahan pencatatan barang masuk, barang keluar, hingga barang kedaluwarsa yang luput dari pendataan. Akibatnya, pimpinan apotek sering kesulitan saat mencoba mencocokkan data persediaan di buku dengan jumlah barang riil yang ada di rak, sehingga proses pengambilan keputusan pun jadi terhambat. Oleh karena itu, sistem inventaris dirancang untuk mengatasi permasalahan tersebut, dengan harapan dapat membantu Apotek Syira Farma mengelola data persediaan secara lebih cepat dan akurat. Penerapan sistem informasi ini memiliki beberapa tujuan utama: meningkatkan kinerja pegawai dalam mengelola stok obat, mempermudah proses rekapitulasi data penjualan, serta memudahkan pimpinan dalam memantau dan menganalisis laporan penjualan dengan lebih tepat dan real-time.