Claim Missing Document
Check
Articles

Found 20 Documents
Search

Indoor Agriculture: Measurement of The Intensity of LED for Optimum Photosynthetic Recovery Benediktus Anindito; Adri Gabriel Sooai; Mochammad Mizanul Achlaq; Moh Noor Al-Azam; Aris Winaya; Maftuchah Maftuchah
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 5: EECSI 2018
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1199.931 KB) | DOI: 10.11591/eecsi.v5.1676

Abstract

Indoor agriculture has begun in urban areas. With the narrowness of land and the model of vertical house development, makes this method of indoor agriculture has become a trend in several big cities in the world. Meanwhile, the one that is always needed by every plant is photosynthesis, and every natural photosynthesis of plants continually requires abiotic components of visible light from sunlight. That's why the indoor agriculture requires a replacement source of the sun with artificial sunlight. We can make this artificial sunlight from several light sources, such as incandescent lamps, compact fluorescent lamps (CFL), or the latest with Light Emitting Diode (LED). In this paper, we measured the intensity of light generated from several LEDs with some radiation distance to obtain the optimal energy for plants photosynthesis.
Perbandingan Performansi Algoritma Pengklasifikasian Terpandu Untuk Kasus Penyakit Kardiovaskular Adi Nugroho; Agustinus Bimo Gumelar; Adri Gabriel Sooai; Dyana Sarvasti; Paul L Tahalele
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 4 No 5 (2020): Oktober 2020
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (477.038 KB) | DOI: 10.29207/resti.v4i5.2316

Abstract

One of the health problems that occur in Indonesia is the increasing number of NCD (Non-Communicable Disease) such as heart attack and cardiovascular disease. There are two factors that cause cardiovascular disease, i.e. factor that can be changed and cannot be changed. This study aim to analyze the best performance of several classification algorithms such as k-nearest neighbors algorithm (k-NN), stochastic gradient descent (SGD), random forest (RF), neural network (NN) and logistic regression (LR) in classifying cardiovascular based on factors that caused those diseases. There are two aspects that need to be examined, the performance of each algorithm which is evaluated using the Confusion matrix method with the parameters of accuracy, precision, recall and AUC (Area Under the Curve). The dataset uses 425.195 samples from result data of cardiovascular disease diagnosed. The testing mode uses percentage split and cross-validation technique. The experimental results show that the performance of NN algorithms produces the best prediction accuracy compared to other algorithms, which is accuracy of 89.60%, AUC of 0.873, precision of 0.877, and recall of 0.896 using percentage split and cross-validation testing mode using Orange. For the accuracy of 89.46%, AUC of 0.865, precision of 0.875, and recall of 0.895 using cross-validation testing mode using Weka. By KNIME, the result of accuracy value is 88.55%, AUC value is 0.768, precision value is 0.854, and recall value is 0.886 using cross-validation testing mode.
Platform Digital Kelurahan Babau Paskalis Andrianus Nani; Patrisius Batarius; Natalia Magdalena Rafu Mamulak; Paulina Aliandu; Emerensiana Ngaga; Sisilia Daeng Bakka Mau; Yovinia Carmeneja Hoar Siki; Frengky Tedy; Alfry Aristo J. SinlaE; Ign. Pricher A. N. Samane; Donatus J. Manehat; Adri Gabriel Sooai
Patria : Jurnal Pengabdian Kepada Masyarakat Vol 2, No 2: September 2020
Publisher : Universitas Katolik Soegijapranata

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24167/patria.v2i2.2772

Abstract

Managing letters related to residence in Babau Village usually takes a long time. Residents must meet directly with the head of the RT/RW in the domicile area to obtain a cover letter, then they can go to the Kelurahan office to arrange the intended documents. The problem that then arises is if the community cannot meet the RT/RW leader because of busy life. Likewise if it arrives at the Kelurahan office, it turns out that the Lurah is not there. This will certainly hinder the management process. In addition to the above problems, another problem that can also arise is the RT/RW cover letter that has the potential to be falsified.These problems can be solved by building a Digital Village platform where the community does not need to meet directly with the RT/RW but can use the existing platform to manage the required documents. The proposal letter that goes to RT/RW can be directly approved and forwarded to the Village Head to be approved and ready to be printed. Everything is done without the need for paperless paperwork.
Penentuan Kemampuan Motorik Halus Anak dari Proses Menulis Hanacaraka Menggunakan Random Forest Nurul Zainal Fanani; Adri Gabriel Sooai; Surya Sumpeno; Mauridhi Hery Purnomo
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 9 No 2: Mei 2020
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1328.116 KB) | DOI: 10.22146/jnteti.v9i2.153

Abstract

The children's Fine Motor Skill Assessment (FMS) at the beginning of school age is essential to get information about children's school readiness. The process of measuring FMS has been carried out by observing children, both directly and from the results of sketches or children's writing. This observation process is very dependent on the observer's perception. This study aims to determine the children's FMS using Javanese script. This research develops a new method for determining children's FMS from the process of writing the Javanese script. The system was recording data directly when the child is writing the Javanese script. Retrieval of data recording from the writing process involved 14 students in 1st grade and 2nd grade from three elementary schools in Jember district. The process of recording data from each student produces a large enough raw data. Therefore, this study uses random forest classification method,because this method can carry out the classification process on large amounts of data by combining several decision trees. Other classification methods, including naïve Bayes and k-NN, were used as a comparison. The experiment results show that the random forest classification method is the bestwith an accuracy of 98.7%.
SOSIALISASI POLA HIDUP BERSIH DAN SEHAT DALAM UPAYA PENCEGAHAN STUNTING DI DESA MANLETEN KABUPATEN BELU Anselmus Boy Baunsele; Ambrosius Faofeto; Hildegardis Missa; Aloysius Djalo; Sardina Ndukang; Anggelinus Nadut; Gerardus D. Tukan; Maximus M. Taek; Adri Gabriel Sooai
Aptekmas Jurnal Pengabdian pada Masyarakat Vol 6 No 1 (2023): APTEKMAS Volume 6 Nomor 1 2023
Publisher : Politeknik Negeri Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36257/apts.v6i1.4839

Abstract

The healty lifestyle is a habits that needs to be used as a principle of life by every people to improving the life quality especially for the health sector. The good comprehension of health can help every people for stunting prevention. Stunting is a kind of disease that caused by the poor nutrition of meals for the children for their growing period. By the community service program of public education of high nutrition food for the parents to increase the nutrition grade for these children is expected to prevent the potential for stunting in these children. In addition, this community service program give the new experience for the community to utilize the ingridients food to create the high nutrition food with low price and can produce in every household. Babanas and corn are abundantly available in Manleten Village and always consumed by the conventional processing can be produced to be a new variant of food that can be a new food reference
Klasifikasi Citra Daun Anggur Menggunakan SVM Kernel Linear Adri Gabriel Sooai; Paskalis Andrianus Nani; Natalia Magdalena Rafu Mamulak; Corazon Olivia Sianturi; Shine Crossifixio Sianturi; Alicia Herlin Mondolang
JOINTECS (Journal of Information Technology and Computer Science) Vol 8, No 1 (2023)
Publisher : Universitas Widyagama Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31328/jointecs.v8i1.4496

Abstract

Pemanfaatan kecerdasan buatan untuk proses pengenalan citra telah dilakukan oleh banyak peneliti. Salah satu bidangnya adalah mengenali penyakit pada daun anggur. Telah dilakukan pemodelan menggunakan augmentasi mendahului pengklasifikasian support vector machine dengan kernel cubic, dengan hasil akurasi yang diperoleh adalah 97.6%.  Peningkatan kinerja akurasi prediksi citra melalui pemodelan masih dapat ditingkatkan melalui berbagai cara. Beberapa teknik yang bisa digunakan antara lain adalah menggunakan seleksi fitur, pengolahan awal untuk mencari dan membuang outlier, ataupun pemilihan algoritma pengklasifikasi yang secara khusus mampu menangani dataset dengan karakteristik tertentu. Teknik lainnya adalah melewatkan citra pada proses ekstraksi fitur untuk memperoleh dataset yang berkualitas baik dan mampu dilatih untuk memperoleh model dengan akurasi yang relatif lebih tinggi, dibandingkan penelitian sebelumnya. Penelitian ini bertujuan meningkatkan perolehan angka akurasi dengan menggunakan bantuan proses ekstraksi fitur, serta membandingkan kinerja beberapa pengklasifikasi yaitu k-Nearest Neighbor, Random Forest, Naïve Bayes, Neural Network dan Support Vector Machine. Metode yang digunakan dimulai dari proses ekstraksi fitur memanfaatkan algoritma SqueezNet untuk mendapatkan dataset dengan komposisi 1000 kolom dan 7222 baris. Selanjutnya dilakukan pembagian data latih dan uji dengan perbandingan 60:40. Pelatihan data menggunakan ragam pengklasifikasi yang di validasi menggunakan 2-fold cross validation. Data yang digunakan adalah dataset sekunder daun anggur, yang terdiri dari 7222 citra daun, terbagi dalam empat kelas yang telah tervalidasi dari penelitian terkait. Hasil yang diperoleh mengungguli penelitian sebelumnya yaitu 98.1% pada pengklasifikasi Support Vector Machine menggunakan kernel linear. 
Real world design and implementation of pathfinding sewer inspection robot using a-star algorithm Atyanta Rumaksari; Adri Gabriel Sooai; Gloria Song Abimanyu; Gunawan Dewantoro; Hartanto Kusuma Wardana; Budihardja Murtianta; Lukas Bambang Setyawan
Jurnal Mantik Vol. 7 No. 1 (2023): May: Manajemen, Teknologi Informatika dan Komunikasi (Mantik)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/mantik.v7i1.3702

Abstract

This paper presents the design and implementation of a sewer inspection robot that utilizes the A-Star algorithm for pathfinding. The robot is intended to provide a more efficient solution for culvert workers in inspecting sewer pipes, particularly in hard-to-reach areas. The A-Star algorithm was chosen due to its ease of implementation and low computational resource requirements, making it suitable for real-time applications. The robot was designed with a modular approach, allowing for flexibility in adapting to different pipe sizes and configurations. It is equipped with various sensors and cameras, allowing for accurate inspection of pipe conditions and identification of potential issues. The A-Star algorithm was used to plan the robot's path through the sewer pipes, minimizing the time required for inspection and reducing the risk of damage to the pipes. The results of the implementation showed that the sewer inspection robot using the A-Star algorithm was able to efficiently navigate through the sewer pipes, reducing the time required for inspection and minimizing the need for manual labor. In order to check the performance, we performed experiments on six test models through simulation. On average, the proposed algorithm showed remarkable results, where all models can generate path planning to find the target from the start position. We obtained an average time completion from Models 1 to 6 with a maximum travel distance of 30 meters of 12.96, 4.47, 18.59, 20.71, 24.93, and 19.34 seconds.
Deteksi Gestur Lengan Dinamis pada Lingkungan Virtual Tiga Dimensi Koleksi Warisan Budaya Adri Gabriel Sooai; Atyanta. N. Rumaksari; Khamid Khamid; Nurul Zainal Fanani; Surya Sumpeno; Mauridhi Hery Purnomo
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 7 No 4: November 2018
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1256.2 KB)

Abstract

Virtual reality technology can be used to support museum exhibitions. Implementation could be in various platforms. There are many implementation options, for example in smartphones, tablet, and desktop computers. Most objects of museum collections are very fragile. Minimizing the direct touch on a collection object is one of the benefits of this technology. This study aims to prepare gestures suitable for the exploration of virtual objects of cultural heritage collection. Five sets of gestures have been prepared, namely lifting, picking, holding, sweeping from both directions, left and right. Dynamic arm gestures are recorded using the forearm sensor. The recorded data contains coordinates of gestures in form of x, y, z, raw, pitch, and yaw. Gaussian mixture models are used in selecting features to produce good accuracy in the classification process.Two functions are used, namely probability density function and cumulative distribution function for the feature selection process. In this study, two experiments were used to train the gesture model. The accuracy of the two experiments is shown in the form of a confusion matrix. Each of the confusion matrices show excellent results of 99.8% for SVM and k-NN. Furthermore, modeling results are tested using new data. The testing shows 89.25% result for SVM classifier and 90.09% for k-NN. Four other dynamic arm gestures have a very satisfactory rate of 100% for the two classifiers. The five gestures can be used in the development of virtual reality applications.
Penguatan Literasi bagi Siswa-Siswi SDK Kristus Raja Baun Kabupaten Kupang-NTT pada Masa Pandemi Covid-19 Anselmus Boy Baunsele; Erly G. Boelan; Hildegardis Missa; Adri Gabriel Sooai; Paskalis Andrianus Nani; Maximus M. Taek; Gerardus D. Tukan; Didimus Dedi Dhosa; Adrianus Ketmoen
Jurnal Mandala Pengabdian Masyarakat Vol. 4 No. 1 (2023): Jurnal Mandala Pengabdian Masyarakat
Publisher : Progran Studi Farmasi STIKES Mandala Waluya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35311/jmpm.v4i1.173

Abstract

Pandemi Covid-19 menyebabkan perubahan dari semua segi kehidupan, temasuk bidang pendidikan. Pembelajaran online yang ditawarkan mengharuskan pembelajaran tanpa adanya interaksi langsung antara guru dan siswa di Sekolah Dasar Katolik (SDK) Kristus Raja Baun. Hal ini menyebabkan banyak siswa yang kesulitan dalam hal membaca. Pendampingan dan peningkatan budaya literasi yang dilaksanakan oleh mahasiswa  Universitas Katolik Widya Mandira menjadi salah satu solusi untuk membantu anak-anak SDK Kristus Raja Baun. Setelah melalui pendampingan di sekolah maupun Grup Belajar Sore (GBS), diperoleh hasil pengakuan dari guru dan orang tua  bahwa terjadi perubahan kebiasaan dari para siswa di rumah dan disekolah. Para siswa cenderung untuk mencari lebih banyak sumber bacaan untuk dibaca. Hasil lain yang diperoleh yaitu para siswa semangat untuk menceritakan kembali cerita yang mereka baca serta interaksi positif dari para siswa selama pembelajaran. Peran guru, orang tua dan  masyarakat sangat diperlukan dalam menanamkan budaya literasi bagi generasi masa depan bangsa.
Sosialisasi dan Pelatihan Penulisan Karya Ilmiah Bagi Guru-Guru SDI Kobelete Anselmus Boy Baunsele; Ambrosius Faofeto; Yoaclina D. Ninu; Adri Gabriel Sooai; Merpiseldin Nitsae; Lenciani Seran
Jurnal Kreativitas Pengabdian Kepada Masyarakat (PKM) Vol 6, No 12 (2023): Volume 6 No 12 2023
Publisher : Universitas Malahayati Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33024/jkpm.v6i12.12554

Abstract

ABSTRAK Publikasi karya ilmiah merupakan suatu syarat yang cukup penting untuk membantu memperlancar kenaikan pangkat seorang guru. Melalui kegiatan ini diharapkan para guru SDI Kobelete mampu menghasilkan karya ilmiah yang akan dipakai untuk keperluan peningkatan kariernya. Kegiatan yang akan dilakukan ini berupa sosialisasi substansi dan pelatihan penulisan karya ilmiah. Sebelum dilakukan sosialisasi maka diberikan angket kepada para peserta untuk diketahui kemampuan awal para guru. Materi yang diberikan adalah pengenalan karya ilmiah, PTK dan cara mengirimkan artikel ke jurnal. Hasil dari kegiatan PKM ini selanjutnya akan diberikan angket untuk mengetahui hasil atau perubahan yang dirasakan para guru setelah mengikuti kegiatan ini. Hasil yang diperoleh bahwa banyak indikator utama pada PKM ini yang terpenuhi diantaranya guru memahami substansi karya ilmiah, gambaran tentang PTK dan cara mengirimkan artikel ke jurnal ilmiah. Dapat dikatakan bahwa kegiatan PKM ini mampu membantu para guru untuk meningkatkan kemampuan mereka. Kata Kunci: Artikel ilmiah, PKM, Publikasi, Sosialisasi ABSTRACT Publication of scientific work is an important requirement to help facilitate the promotion of a teacher. Through this activity, it is hoped that Kobelete SDI teachers will be able to produce scientific work that will be used for career advancement purposes. The activities that will be carried out are in the form of substance socialization and training in writing scientific papers. Before the socialization was carried out, a questionnaire was given to the participants to determine the initial abilities of the teachers. The material provided is an introduction to scientific work, classroom action research, and how to submit articles to journals. The results of this community service activity will then be given a questionnaire to find out the results or changes felt by the teachers after participating in this activity. The results obtained showed that many of the main indicators of community service were met, including teachers understanding the substance of scientific work, an overview of class action research, and how to submit articles to scientific journals. It can be said that this community service activity is able to help teachers improve their abilities.  Keywords: Scientific Articles, Community Service Activity, Publication, Socialization
Co-Authors Adi Nugroho Adrianus Ketmoen Adrianus Ketmoen Agustinus Bimo Gumelar Alfry Aristo Jansen Sinlae Alicia Herlin Mondolang Aloysius Djalo Ambrosius Faofeto Ambrosius Faofeto Anggelinus Nadut Anselmus Boy Baunsele Aris Winaya Atyanta Nika Rumaksari Atyanta. N. Rumaksari Benediktus Anindito Boelan, Erly G. Budihardja Murtianta Chantika Elisabeth Hermanus4 Corazon Olivia Sianturi Didimus Dedi Dhosa Donatus Joseph Manehat Dwiandri, Fransiskus Asisi Aditya Dyana Sarvasti Emerensiana Ngaga Erly G. Boelan Fanani, Nurul Zainal Fransiskus Asisi Aditya Dwiandri Frengky Tedy Gerardus Diri Tukan Gloria Song Abimanyu Gunawan Dewantoro Hartanto Kusuma Wardana Henny Angri Manafe Hildegardis Missa Ignatius Pricher Agung Nirwanto Samane Khamid Khamid Khamid Khamid Laniwati, Melania Lenciani Seran Lukas Bambang Setyawan Maftuchah Maftuchah Maria Augustin Lopes Amaral Mariano Albertho Dewa Dewa Do Nascimento Mauridhi Hery Purnomo Mauridhi Hery Purnomo Maximus M Taek Meolbatak, Emiliana Metan Merpiseldin Nitsae Mochammad Mizanul Achlaq Moh Noor Al-Azam Mondolang, Alicia Herlin Natalia Magdalena Rafu Mamulak Nurul Zainal Fanani Paskalis Andrianus Nani Paskalis Andrianus Nani Patrisius Batarius Paul L Tahalele Paulina Aliandu Perdana, Muhammad Ilham Ratumakin, Paulus A. K. L. Riksakomara, Edwin Sardina Ndukang Shine Crossifixio Sianturi Sianturi, Shine Crossifixio Sisilia Daeng Bakka Mau Sudiarti, Yeyen Surya Sumpeno Taek, Maximus M. Wiwik Anggraeni Yoaclina D. Ninu Yolinda Yanti Sonbay Yovinia Carmeneja Hoar Siki