cover
Contact Name
-
Contact Email
jag.ft@ugm.ac.id
Phone
+62274-513668
Journal Mail Official
jag.ft@ugm.ac.id
Editorial Address
Geological Engineering Departement Universitas Gadjah Mada Jl. Grafika No. 2 Kampus UGM Yogyakarta 55281 Phone +62-274-513668 Fax +62-274-546039
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Journal of Applied Geology
ISSN : 25022822     EISSN : 25022822     DOI : https://doi.org/10.22146
Journal of Applied Geology – JAG focuses on the applied geology and geosciences with its key objective particularly emphasis on application of basic geological knowledge for addressing environmental, engineering, and geo-hazards problems. The subject covers variety of topics including geodynamics, sedimentology and stratigraphy, volcanology, engineering geology, environmental geology, hydrogeology, geo-hazard and mitigation, mineral resources, energy resources, medical geology, geo-archaeology, as well as applied geophysics and geodesy.
Articles 180 Documents
Numerical Evaluation of Earthquake Effect on Cisumdawu Tunnel Stability I Gde Budi Indrawan; Jutika Aditya Nugraha Nugraha; Dwikorita Karnawati
Journal of Applied Geology Vol 4, No 2 (2019)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1027.577 KB) | DOI: 10.22146/jag.53207

Abstract

Cisumdawu Tunnel is located approximately 3.95 km southeast of the activeLembang Fault. Earthquakes induced by movement of the the active the strike-slip fault may influence stability of the twin tunnel. This paper presents results of numerical analyses carried out to demonstrate effect of a worst-case scenario of earthquake load potentially induced by the Lembang Fault on the stability of the Cisumdawu Tunnel. Static and pseudo-static tunnel stability analyses were carried out at 11 observation stations of tunnel face mapping using RS2 finite element package (Rocscience, Inc.). In the pseudo-static analyses, a 0.48 horizontal seismic load coefficient, which was obtained from a deterministic seismic hazard analysis (DSHA) based on a 6.8 maximum magnitude of estimated earthquake sourced from the Lembang Fault using Campbell-Bozorgnia (2014) attenuation relationship, was applied to the finite element models. The numerical analysis results showed that strength factors of the rock masses around the twin tunnel were greater than unity, both under the static and earthquake loads. The forepolling zones, however, appeared to be under an overstressed condition. Reduction of rock strength factor around the tunnel roof due to application of the earthquake load occurred at all observation stations. Total displacement contours of rock masses around the twin tunnel indicated an increased rock mass displacement due to the earthquake load, as compared to that due to the static load. Under the static load, the largest displacement occurred at the tunnel inverts. The predicted roof displacements obtained from this study were in a reasonably good agreement with those obtained from the field measurements. Number of yielded elements and extend of shear and tension failure zones in the rock masses around the twin tunnel also appeared to increase due to the earthquake load. Despite slight tunnel displacement as predicted in the numerical analyses, the worst-case scenario of earthquake load potentially induced by the Lembang Fault may only cause failures of the rock masses around the Cisumdawu Tunnel. To prevent the twin tunnel displacement caused by such relatively severe earthquake loads, however, stabilizing surrounding the relatively poor ground condition may be necessary.
Total Sulfur and Ash Yield of Tanjung Formation Coal in Sekako, Barito Basin, Central Kalimantan: Implication of Depositional Process Hendra Amijaya; Beny Wiranata; Ferian Anggara; Agung Rizki Perdana; Oyinta Fatma Isnadiyati; Deddy Nan Setya Putra Tanggara
Journal of Applied Geology Vol 4, No 2 (2019)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2938.647 KB) | DOI: 10.22146/jag.53208

Abstract

Tanjung Formation is one of the major coal-bearing deposit in the Barito Basin, Central Kalimantan. The distribution of total sulfur and ash yield in coal is closely related to the depositional environment. This study was to determine the total sulfur and ash yield and the interpretation of the dynamics of depositional process. Coal seam A and B generally have low to medium ash yield 2.82 to 9.23 (wt.%, db) and low total sulfur content of <1 (wt.%, db), except for the 6PLY1 coal sample which has total sulfur content that relatively high at 1.55 (wt.%, db). Coal samples 5PLY1A, 5PLY1B, 5PLY3, 5PLY5, 6PLY2, 6PLY4, 6PLY5, 6PLY7, and 6PLY9 which have low to medium ash yield and low total sulfur content <1% (wt.%, db) are formed in the topogeneous mire (freshwater swamp) in a fluvial environment. The total sulfur content was interpreted to be derived mainly from the parent plant materials. Meanwhile, the 6PLY1 coal sample which has an ash yield of 5.83 (wt.%, db) and total sulfur content of 1.55 (wt.%, db) formed in topogeneous mire in an environment that is invaded by sea water, and the total sulfur content were interpreted coming from the parent plant materials and the effect of seawater invasion which is rich in sulfate (SO4) compounds. It is also supported by the occurrence of syngenetic mineral content (framboidal pyrite) and epigenetic pyrite of 1.23 (vol.%).
The 22 February 2018 landslide mechanism in Pasir Panjang Village, Brebes Regency, Central Java, Indonesia Wahyu Wilopo; Adam Raka Ekasara; Hendy Setiawan; Dwikorita Karnawati
Journal of Applied Geology Vol 4, No 2 (2019)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2245.096 KB) | DOI: 10.22146/jag.53255

Abstract

On 22 February 2018 landslide occurred in Pasir Panjang Village, Salem District, Brebes Regency of Central Java Province, Indonesia. About 8 people were died, 4 people were injured and several infrastructures were damaged due to this landslide. This research is carried out to understand geological-geotechnical condition and to study the initiation mechanism of the landslide. Field investigation and UAV mapping are carried out to detect slip surface and define slope geometry. The rainfall-induced pore-water pressure is estimated by using the Slope Infiltration Distributed Equilibrium (SLIDE) model. Then, limit equilibrium method is used to estimate the safety factor of the slope, while the shear strength parameters are determined by applying back analysis approach that compared with data from laboratory tests. The results show that landslide occurred in permeable layer of silty sand overlaid above impermeable andesitic breccia. Results from back analysis indicate that the shear strength parameters and rainfall intensity are strongly influence the stability of slope against landslide.
Stratigraphy of Kendeng Zone in Miyono Village and Surrounding, Sekar District, Bojonegoro Regency, East Java, Indonesia Mutawif Ilmi Muwaffiqih; Wahyu Ardiansyah Nugraha; Irvan Fatarwin Lubis; Mochammad Indra Novian
Journal of Applied Geology Vol 6, No 1 (2021)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3869.576 KB) | DOI: 10.22146/jag.54199

Abstract

This paper will comprehensively discuss the stratigraphy of the Kendeng Zone by using geological field mapping and laboratory analysis. The research area located in the Miyono Village and surrounding areas, Sekar District, Bojonegoro Regency, East Java with an area of 4x5 km2. Based on the geological mapping results obtained 160 points station with a variety of results in the form of tracking map of the research area. Laboratory analysis uses Embry and Klovan classification (1971), Pettijohn et al. (1987), and Mount (1985) for petrographic analysis, while paleontological analysis using Manual of Planktonic Foraminifera (Postuma, 1971) and Atlas of Benthic Foraminifera (Holbourn et al., 2013). This paper will show the differences between regional stratigraphy and the result, depositional environment, and its mechanism. Lithology units found grouping into nine units. The research area epoch ranged between N18-N23 (early Pliocene - Holocene) and the depositional environment from the lower bathyal to the terrestrial. The geological structures of the research area must be considered in the stratigraphic arrangement determination. Based on the analysis, the Kendeng Zone stratigraphic column was obtained and expected to provide accurate data of Kendeng Zone specifically around Miyono area.
Phytoremediation of Heavy Metals Contaminated Soil in Artisanal Gold Mining at Selogiri, Wonogiri District, Central Java, Indonesia Bambang Suryo Madyo Pranoto; Wawan Budianta
Journal of Applied Geology Vol 5, No 2 (2020)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (11834.112 KB) | DOI: 10.22146/jag.54586

Abstract

Artisanal gold mining (ASGM) is commonly found in Indonesia, particularly in Wonogiri District, Central Java. One of the impacts of ASGM activity is soil contamination influence by mining waste. The objective of this study to investigate the potential use of Amaranthus spinosus L. and Jatropha curcas for remediation of Pb and As in contaminated soil. Phytoremediation experiment was conducted by using Amaranthus spinosus L. and Jatropha curcas and evaluate the effectiveness of both plants as a hyperaccumulator. The result shows that the higher Pb and As concentration was found in roots rather than shoots in both plants, however, the use of Jatropha curcas seems more effective on reducing Pb and As concentrations more than Amaranthus spinosus L in both shoots and roots. Generally, the use of both hyperaccumulator plants was more effective in Pb remediation compared to As. This phytoremediation experiment revealed that the use of both hyperaccumulator plants reduces the concentrations of Pb and As in contaminated soil, which of the critical point leading to the entry of Pb and As into the food chain.
Coastal groundwater aquifer characterization from geoelectrical measurements- A case study at Kalapara, Patuakhali, Bangladesh. Mohammad Ibrahim Khalil; S. M. Didar-Ul Islam; Md. Jamal Uddin; Ratan Kumar Majumder
Journal of Applied Geology Vol 5, No 1 (2020)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (910.994 KB) | DOI: 10.22146/jag.55009

Abstract

Vertical electrical sounding has been carried out in a coastal area in the southern part of Bangladesh to locate the groundwater aquifers containing fresh water. The Interpex1X1Dv3 computer program was used to process the field apparent resistivity data sets obtained from the vertical electrical sounding.  Geoelectric layers were identified in the context of resistivity and thickness from the vertical electrical sounding data. From the initial parameters layered model was achieved using the inversion technique. Correlation of the obtained layer model with a nearby lithologic log concludes the groundwater aquifer system of the area. From the electrical properties of the subsurface layers, water bearing layers were detected and characterized. Very fine sand geoelectric layer with a thickness varying from 20 to 143 meters is an upper aquifer and has 0.66–14.02 Ωm apparent resistivity value. Fine sand geoelectric layer with 0.21-5.99 Ωm apparent resistivity value is lower aquifer with maximum thickness ~250 meters. From the resistivity value, it is observed that the upper aquifer contains saline to brackish-fresh water while the resistivity value of the lower aquifer indicates that it contains saline water. The water quality of the upper zone varies geographically from the southern to the northern part in the investigated area. The water quality of the upper aquifer is fresh in the northern part of the study while lower aquifer contains saline water there.
Engineering Site Investigation for Foundation Design and Construction in Shale and Sandstone Derived Soils of Okitipupa Area, Southwestern Nigeria Falowo Olusola Olumuyiwa
Journal of Applied Geology Vol 6, No 1 (2021)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4507.016 KB) | DOI: 10.22146/jag.55091

Abstract

Geotechnical and geo-electrical investigations of Okitipupa has been carried out with the major objectives of establishing the subsoil/geology, evaluate the geotechnical properties and recommend appropriate foundation alternatives for building foundation construction. Seven borings were carried out with hand auger at two cone penetration test locations, and representative samples were collected and analyzed in the laboratory in accordance with relevant geotechnical engineering standards. In addition, six vertical electrical soundings (VES) were also conducted using Schlumberger configuration. The result of VES delineates three major geologic sequence comprising the topsoil/caprock, sand surficial aquifer, and sand intermediate aquifer. The topsoil has resistivity range of 242 – 1503 ohm-m and thickness of 3.4 - 20.9 m composed of clay sand and sand. This layer is capable of supporting shallow foundation such as simple spread, raft of reinforced concrete, with recommended allowable bearing pressure of 100 KN/m2 at depths of 1.0 m and 3.2 m in the northern and southern part of the study area respectively. The estimated settlement are less than 50 mm using foundation width of 0.6 m, but could be reduced by almost 50% if the width is greater than or equal to 2 m. The groundwater level is very deep (>10 m) and may not likely threatens the integrity of the foundation structures. The estimated allowable bearing capacity for strip footing (203 – 980 KN/m2), square footing (608 – 2940 KN/m2) within 1.4 m depth is appropriate. The capacity of driven (deep foundation) circular piles of diameters 400mm, 500mm, and 600mm, the recommended pile capacity varies at depth of 5 m (69 – 124 KN), 10 m (225 – 378 KN), and 15 m (470 – 766 KN), while that of bored circular pile ranges from (36 – 75 KN), 10 m (93 – 180 KN), and 15 m (170 – 317 KN).
Hydrothermal Alteration of High Sulfidation Epithermal Deposits in Secang Area, Tulungagung, East Java, Indonesia Anastasia Dewi Titisari; Septyo Uji Pratomo; Arifudin Idrus
Journal of Applied Geology Vol 5, No 2 (2020)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (9686.623 KB) | DOI: 10.22146/jag.55235

Abstract

This research aims to determine geological condition and alteration in an epithermal high sulfidation mineralization as an initial guide for further exploration stages. Detailed geological mapping with scale of 1:12,500 is conducted to identify geological aspects and distribution of alteration zones. Selected rocks samples were prepared for laboratory analysis which are petrography, XRD (X-Ray Diffraction), and FA-AAS (Fire Assay-Atomic Absorption Spectrometry) analyse. Geological condition of the study area consists of six rock units including andesite lava, andesite breccia, diorite intrusion, polymict breccia, limestone, and alluvial deposit. Geological structures found are left strike-slip fault with right strike-slip fault as accompany. Result of XRD analysis shows the presence of clay minerals group: smectite, kaolinite, illite, diaspore, alunite, and pyrophillite. The alteration zones of study area are propylitic, argillic, advance argillic, and silisification zones. The further exploration stage is recommended to focus at the southwest and northeast of study area.
Low-Sulfidation Epithermal Carbonate-Base metal-Gold Mineralization Hosted by Tertiary Sedimentary Rocks in Bastem Prospect, Luwu District, Sulawesi Island, Indonesia: A Preliminary Study Arifudin Idrus; Irzal Nur; Sufriadin Sufriadin; Fadlin Fadlin; Indra Sanjaya; Rohaya Langkoke
Journal of Applied Geology Vol 5, No 1 (2020)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3983.907 KB) | DOI: 10.22146/jag.55472

Abstract

In Indonesia, gold is typically mined out from epithermal, porphyry and skarn deposit types occurred within volcanic belts along magmatic arc or active continental margin setting. Numerous gold prospects, however, are recently discovered in association with metamorphic and sedimentary rocks. This paper is aimed to discuss a preliminary study on the occurrences and characteristics of the sedimentary rock-hosted low-sulfidation (LS) epithermal gold mineralization in Bastem (Bessengan Tempe) prospect, Luwu district, Sulawesi Island, Indonesia. Detailed geological and hydrothermal alteration mapping was performed to understand the distribution and characteristics of ore mineralization. Representative ore samples taken were analysed for ore chemistry by means of Fire Assay – Atomic Absorption Spectrometry (FA-AAS) and Acid Geochemical Digest - Atomic Absorption Spectrometry (GA-AAS). The results from this work that the Bastem prospect is stratigrapically occupied by Tertiary sedimentary rocks of Toraja formation, which is adjacent to volcanic rocks of Lamasi formation. Gold-bearing quartz±carbonate veins are hosted by mudstone and siltstone of Toraja formation. The quartz-carbonate veins show a typical LS epithermal open space filling texture containing erratic gold grade of up to 7.16 g/t with relatively high besemetals (Pb and Zn) grades of up to >0.4 and >1%, respectively. Based on those various features, the LS epithermal deposit is categorized as “carbonate-basemetal-gold mineralization type”, which might be originated in back arc rift/basin setting. This ‘unconventional’ sedimentary rock hosted-gold mineralization type would be the new target of gold exploration in Indonesia.
Updated Segmentation Model of the Aceh Segment of the Great Sumatran Fault System in Northern Sumatra, Indonesia Aulia Kurnia Hady; Gayatri Indah Marliyani
Journal of Applied Geology Vol 5, No 2 (2020)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (11044.408 KB) | DOI: 10.22146/jag.56134

Abstract

We study the Aceh Fault segment, the northernmost segment of the Great Sumatran Fault in western Indonesia. The Aceh Fault segment spans 250 km long, passing through three districts: West Aceh, Pidie Jaya, and Aceh Besar, a region of ~546,143 population. The current segmentation model assumes that the Aceh Fault segment acts as a single fault segment, which would generate closer to an M8 earthquake. This estimation is inconsistent with the ~M6–7 historical earthquake data. We conduct a detailed active fault mapping using an ~8 m resolution digital elevation model (DEM) of DEMNAS and sub-m DEM data from UAV-based photogrammetry to resolve this fault’s segmentation model. Our study indicates that the Aceh Fault is active and that the fault segment can be further divided into seven sub-segments: Beutong, Kuala Tripa, Geumpang, Mane, Jantho, Indrapuri, and Pulo Aceh. The fault kinematics identified in the field is consistent with right-lateral faulting. Our study’s findings provide new information to understand the fault geometry and estimate potential earthquakes’ maximum magnitude along the Aceh Fault segment. These are important for the development of seismic hazard analysis of the area.