cover
Contact Name
M. Baitullah Al Amin
Contact Email
baitullahalamin@ft.unsri.ac.id
Phone
+6281368768186
Journal Mail Official
j_cantilever@ft.unsri.ac.id
Editorial Address
Department of Civil Engineering and Planning, Faculty of Engineering, Sriwijaya University Jl. Raya Palembang-Prabumulih Km. 32, Indralaya Ogan Ilir, South Sumatra Indonesia zip code: 30662
Location
Kab. ogan ilir,
Sumatera selatan
INDONESIA
Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil
Published by Universitas Sriwijaya
ISSN : 19074247     EISSN : 24774863     DOI : 10.35139
Core Subject : Engineering,
Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil is a research journal and study in civil engineering that presents research results in the fields of building and structural engineering, transportation, water resources engineering and management, geotechnical engineering, construction engineering and management, environmental engineering, and architecture. The journal was first published in 2006 in the printed version. Since 2015, Cantilever has been published both in the printed and online versions (e-journal). For the online version, previously, the journal could be accessed at http://cantilever.unsri.ac.id, but since Vol. 8 No.2 (2019), the journal is published at http://cantilever.id. This journal is managed and published by the Department of Civil Engineering and Planning, Faculty of Engineering, Sriwijaya University. The journal is published twice a year, in April and October. The Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil aims to: 1) promote a comprehensive approach to civil engineering incorporating viewpoints of different disciplines, 2) strengthen academic exchange with other institutions, and 3) encourage scientists, practicing engineers, and others to conduct research and other similar activities. The journal presents the results of research and studies in the fields of civil engineering, architecture, and environmental engineering. The scope of this journal covers the topics: water resources engineering, transportation, geotechnical engineering, building and structural engineering, construction engineering and management, environmental engineering, and architecture.
Articles 94 Documents
Peningkatan Kapasitas Tempat Penampungan Sementara (TPS) Ciroyom Menjadi Stasiun Peralihan Antara (SPA) Berskala Kawasan di Kecamatan Andir, Kota Bandung I Made Wahyu Widyarsana; Oloan Ivan Daniel
Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil Vol 9 No 1 (2020): Cantilever
Publisher : Department of Civil Engineering and Planning, Faculty of Engineering, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2803.535 KB) | DOI: 10.35139/cantilever.v9i1.29

Abstract

Ciroyom TPS is one of the waste facilities in Andir Sub-district. Ciroyom TPS is managed by PD Kebersihan Kota Bandung which works as temporary solid waste collection from residential and Ciroyom Market. The large area of the TPS Ciroyom service area, which is 5 out of 6 villages that produce large amounts of waste that reaches 45.43 tonnes/day. It makes the amount of waste transportation from TPS to TPA reach 12 ritation/day. The distance from TPS (Tempat Penampungan Sementara) Ciroyom to Sarimukti Regional Landfill which requires 44 km is a major consideration needed by the Waste Transfer Station (SPA, Stasiun Peralihan Antara) for regional scale. SPA takes in reducing the volume of waste so that it can reduce the ratio of garbage transportation to landfill (TPA, Tempat Pemrosesan Akhir). With adequate land area, TPS Ciroyom has the potential to improve its function to become a SPA for regional scale. Through the analysis of several alternative concepts and development scenarios, the amount of waste generated will be managed at the SPA Ciroyom for the next 10 years. The main facilities designed at the SPA Ciroyom for regional scale are waste compaction units resulting in volume reduction with the vertical compression method. Through solidification of waste, residual waste classified as residues is expected to reduce the volume by 60-70%. In addition, other facilities are provided which are designed at Ciroyom Area Scale SPA such as waste sorting facilities using conveyor belts, organic waste processing with open windrow systems, and inorganic waste recovery facilities that still have selling points.
Studi Pemanfaatan Limbah Beton Mutu Tinggi pada Campuran Asphalt Concrete Binder Course (AC-BC) Ika Sulianti
Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil Vol 9 No 1 (2020): Cantilever
Publisher : Department of Civil Engineering and Planning, Faculty of Engineering, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (357.607 KB) | DOI: 10.35139/cantilever.v9i1.34

Abstract

The purpose of this research is to find out whether the modification of asphalt used with high quality of concrete waste as coarse substitute aggregate of Asphalt Concrete - Binder Course (AC – BC). In this study, the researcher used high quality of concrete waste fc’ 42, fc’ 47, fc’ 50, each waste concrete quality will be mixed with asphalt bitumen contents 5%, 5.5 %, 6 %, 6.5, and 7%. This research used the Marshall test method to determine stability value, flow value, Void In Mix (VIM), Void In Mineral Aggregate (VMA), Void Filled With Asphalt (VFA). AC - BC with high quality of concrete waste fc'42 obtained for the best bitumen content obtained is 7%, with a stability value of 1491.705 kg, flow 4.264 mm, MQ 343.465, VIM 9.190%, VFA 34.425%, VMA 15.067%. AC - BC with high quality of concrete waste fc'47 was obtained for the best asphalt content obtained was 7%, with stability values ​​1551.715 kg / mm, flow 4.587 mm, MQ 339.122, VIM 5.530%, VFA 63.308%, VMA 14.235%.The best results of the Marshall test were obtained at the high quality of concrete waste fc'50, asphalt content obtained is 7%, with the stability of 1616.145 kg, flow 4.859 mm, MQ 333.720, VIM 5.116%, VFA 55.597%, VMA 13.226%. Referring to the obtained research test, the values of stability match with Bina Marga standard value, namely 800 kg, but VFA value, VIM, and flow are not of Bina Marga standard values. In addition, VMA vales fulfilling Bina Marga standard values are concrete waste fc’42 and fc’47 with the scale 14%. The researcher hopes that this research will be the guideline in making a mixture of asphalt concrete binder courses with the replacement of coarse aggregate using concrete waste and to inspire people in utilizing concrete waste in technical aspects.
Identifikasi Kawasan Potensial Untuk Penerapan Sistem Rainwater Harvesting (RWH) di Kota Palembang dengan Pendekatan Geographic Information System (GIS) Imroatul Chalimah Juliana; Febrinasti Alia; M. Ichwanul Falah; Taufik Ari Gunawan
Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil Vol 9 No 1 (2020): Cantilever
Publisher : Department of Civil Engineering and Planning, Faculty of Engineering, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1273.518 KB) | DOI: 10.35139/cantilever.v9i1.36

Abstract

Rainwater harvesting system (RWH) implementation may be a solution to maximize the water availability and reduce the runoff volume in Palembang City. For successful implementation, it is necessary to identify potential areas for RWH implementation. This study aims to identify areas in Palembang that are potential for implementing the RWH system. An analysis of parameters that affect the classification also conducted. This study used a geographic information system (GIS) approach using rainfall, slope, land use, and soil type parameters which are structured in a hierarchy using the analytical hierarchy process (AHP). Based on the weighted overlay method, it can be concluded that a very potential area for RWH implementation dominated with a wet area, flat slope, dense residential area and the type of soil which is not susceptible to infiltration. Whereas the medium and non-potential areas are dominated by steep and very steep slopes as well as unoccupied land use. Areas of high potential and potential reach 18.17% and 66.14% respectively. While the medium and not the potential is 13.66% and 2.03%. Areas of great potential are in the Buah, Kidul, Sekanak, Sriguna, Bendung, and Selinca Sub Watershed. Non-potential areas are only available in small area in DAS Gandus, Gasing, and Lambidaro Sub Watershed.
Delineasi DAS dan Elemen Model Hidrologi Menggunakan HEC-HMS Versi 4.4 M. Baitullah Al Amin; Mona Foralisa Toyfur; Widya Fransiska; Ayu Marlina
Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil Vol 9 No 1 (2020): Cantilever
Publisher : Department of Civil Engineering and Planning, Faculty of Engineering, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1783.115 KB) | DOI: 10.35139/cantilever.v9i1.37

Abstract

The watershed delineation process is needed and has an essential role in various water resource projects. This study aims to examine the GIS processing function embedded in the latest HEC-HMS software version 4.4 for the delineation of watershed and elements of the hydrological model. In comparison, watershed delineation was also carried out by using ArcGIS software. The area of study is the Bendung subbasin located in Palembang City, where terrain data used is a National DEM data with a spatial resolution of 8 m (0.27 arc-second). The results showed that the boundaries and area of the watershed produced by HEC-HMS 4.4 and ArcGIS showed the same characteristics. The river network produced by the two software shows a slight difference even though the flow patterns are similar. It shows that the level of accuracy and quality of the delineation produced by the HEC-HMS 4.4 is excellent. Besides, elements of the hydrological model can be generated automatically which is not found in previous versions. It allows users to more quickly simulate detailed hydrological models with a large number of elements. Therefore, the use of GIS functions in HEC-HMS 4.4 must be encouraged for various analysis purposes in water resources projects.
Analisis Profil Dasar Saluran Untuk Mengurangi Kecepatan Aliran Pada Pengalihan Sungai Dinar Dwi Anugerah Putranto; Agus Lestar Yuono; MA Muzakki Effendi
Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil Vol 9 No 1 (2020): Cantilever
Publisher : Department of Civil Engineering and Planning, Faculty of Engineering, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2865.512 KB) | DOI: 10.35139/cantilever.v9i1.38

Abstract

In coal mining activities, it is often found that coal reserves are located in layers far from the land surface, and can be located far below the riverbed. In such conditions, the choice that is often taken is to move the river flow. Displacement of river flows in accordance with the regulations allowed has its own challenges to minimize the risks that will occur to the environment. The aim of the study is to design the basis of a new channel to reduce the speed of the river flow, so that the function and sustainability of river use as an ecological function is not disturbed. The method used is to analyze the origin of the river channel discharge and design the dimensions of the diversion river channel. The results obtained, with forecasts of a 50 year return peak flood period of 104.17 m3 / sec and with a divergence in the elevation of the diverting river channel of 18.9 m between the planned upstream and downstream along the 6,212.7 m, then to avoid massive scouring at channel base, a maximum flow rate of 10 m / sec and a minimum of 0.8 m / sec with a channel bottom of 0.0005% is recommended. For this reason the base profile of the canal is trapped at a distance of 500 m, with an elevation difference of 0.25 m. To maintain ecological sustainability, the dimension of the diversion river channel is maintained the same as the original river, b = 8m, H = 3.5m, and H : V = 1.5: 1.
Efektifitas Pengendalian Banjir dengan Embung: Studi Kasus Taman Firdaus Universitas Sriwijaya Deny Ferdian; Anis Saggaff; Sarino
Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil Vol 9 No 1 (2020): Cantilever
Publisher : Department of Civil Engineering and Planning, Faculty of Engineering, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1962.678 KB) | DOI: 10.35139/cantilever.v9i1.39

Abstract

Flood is triggered by a decrease in catchment areas due to an increase in population, activities, and land requirements, both for settlements and economic activities. The flood occurs annually during the wet season at downstream of the campus of Sriwijaya University. In 2019, the downstream swampy land of about 100 ha was excavated and functioned as a retention basin or small reservoir called Embung. The reservoir at Taman Firdaus, Sriwijaya University, was designed by using spillway's top elevation at +5.00m. The objective of the research was to analyze the effectivity of the reservoir on the flood water level of the Kelekar river. One dimensional modelling was used to model the hydraulic routing through small reservoir and Kelekar river. Based on the results of the modeling, it can be seen that the reservoir at Taman Firdaus Universitas Sriwijaya could hold water as much as 1.446.409,39 m3, and lower the flood water level in the Kelekar River by approximately 1 to 1.5 meters.
Pengaruh Penambahan Pasir Terhadap Daya Dukung Subgrade Jalan Yudha Fardyansah; Nurly Gofar
Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil Vol 9 No 2 (2020): Cantilever
Publisher : Department of Civil Engineering and Planning, Faculty of Engineering, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (980.674 KB) | DOI: 10.35139/cantilever.v9i2.42

Abstract

The performance of flexible pavement is highly influenced by the quality of subgrade material. In Palembang, the foundation soil is usually consisted of clay which is sensitive to change in water content caused by rainfall as well as inundation. This paper presents results of laboratory study on the effect of adding sand to clay to be used as subgrade material for urban roads. California Bearing Ratio (CBR) values were used as indication of strength improvement of the subgrade in unsoaked and soaked conditions. The suitability of the stabilized soil for use as subgrade of pavement construction in response to normal and inundated conditions was further assessed through field verification using Dynamic Cone Penetrometer. Results of both laboratory and field studies indicated that addition of 21% sand by dry weight give the most improvement in terms of CBR value. In this case, the CBR unsoaked increased from 8% to 18% while the CBR soaked increased from less than 3% to 8%. Field verification showed that the CBR of compacted natural soil decreased from 8% to 2% after rainfall while the CBR of the sand stabilized soil decreased from 17% to 8%. Thus the sand stabilized clay is expected to perform adequately even after subjected to rainfall and inundation.
Peningkatan Daya Dukung Pondasi pada Tanah Lempung dengan Perkuatan Kolom Tanah Ratna Dewi; Hanafiah; Ridho Ustadi
Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil Vol 9 No 2 (2020): Cantilever
Publisher : Department of Civil Engineering and Planning, Faculty of Engineering, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (768.864 KB) | DOI: 10.35139/cantilever.v9i2.43

Abstract

One of the problematic soils for construction if the soil is used as a foundation for a construction is clay soil which has relatively low shear strength and bearing capacity. Therefore, it needs an improvement effort to increase the strength of the clay soil. The reinforcement soil column is an alternative effort to improve the soil. This paper presents the results of laboratory-scale experimental on the reinforcement modelling of clay soil columns mixed with 6% rice husk ash (RHA). Modelling was carried out with 6 variations of column groups with constant column length of 67cm. The first three variations are the variation in the distance between columns (s/d) with a fixed diameter of 8 cm. The other three variations are column diameter variations with a fixed s/d ratio. The results showed that the larger the distance between the columns, the smaller the bearing capacity of the soil foundation. If the s/d ratio is constant, it is found that the larger the column diameter, the greater the bearing capacity of the soil foundation. The maximum ultimate bearing capacity of the soil is achieved in variations with a column diameter of 12cm and a distance between columns of 30cm (s/d = 2.5) with a value of 39.56 kPa. This bearing capacity provides a BCR value of 3.75% or almost 4 times the bearing capacity of the unreinforced foundation.
Analisis Kapasitas Kolam Retensi Untuk Pengendalian Banjir di DAS Buah Kota Palembang Febrinasti Alia; Sakura Yulia Iryani; Nuzula Ramadhanti
Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil Vol 9 No 2 (2020): Cantilever
Publisher : Department of Civil Engineering and Planning, Faculty of Engineering, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1995.12 KB) | DOI: 10.35139/cantilever.v9i2.44

Abstract

According to Public Works Office of Palembang City, Buah Watershed is listed as one of priority areas that require immediate flood management actions. Flat terrain, high rainfall intensity, tidal fluctuation worsens by massive land use change, are major causes that increase surface water runoff. Therefore, retention basins as one of technical solutions are expected to accommodate runoff discharge and reduce flood. This study aims to analyze the existing hydrological conditions of Buah watershed and to simulate the effectiveness of designed retention basins on peak flow reduction. Hydrological analysis using SCS Unit Hydrograph Model, HEC-HMS combine with spatial analysis using GIS in 26 subcatchment areas resulted on peak discharges range from 1,27 m3/s – 15,71 m3/s. Furthermore, there are ​​12 proposed retention basins within study area ranges from ​​0,580 Ha – 3,967 Ha that are designed to reduce the peak discharge. Simulation result of flood discharge reduction using HEC-HMS indicates that the effectiveness of retention basins in proposed locations varies from 0,03% - 80,05% depending on watershed areas, land availability, and the depth of retention basins.
Evaluasi dan Analisis Kolam Retensi Pengendalian Banjir: Studi Kasus Kolam Retensi Brimob Kota Palembang Tri Fitriana; Taufik Ari Gunawan; Imroatul Chalimah Juliana
Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil Vol 9 No 2 (2020): Cantilever
Publisher : Department of Civil Engineering and Planning, Faculty of Engineering, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2004.611 KB) | DOI: 10.35139/cantilever.v9i2.46

Abstract

Brimob retention basin is located within the Sekanak Sub-watershed system, which is a flood-prone point. Administratively, the Brimob retention basin area is a part of the Sub-district of Ilir Barat I. The research method used is computer modeling. The steps taken are data collection, hydrological analysis, cross-sectional analysis, hydrological and hydraulic modeling using pumps. The Brimob retention basin can accommodate a volume of water up to 115,103.73 m3, up to an elevation of the embankment of + 4.30 m. The magnitude of designed rainfall is R2 = 118.78 mm, R5 = 144.78 mm, R10 = 161.99 mm and R25 = 183.73 mm. The peak discharge of each return period is Q2 = 6.30 m3 / s, Q5 = 7.67 m3/s, Q10 = 8.59 m3/s and Q25 = 9.74 m3/s. To assess the effectiveness of pump operation, 2 (two) pumping capacities are simulated, namely: 250 l / sec and 500 l / sec, each used 2 (two) pump units. The simulation used a pump with a capacity of 500 l / sec, and the amount of discharge (inflow) for each return period is as input. The conclusion is that the use of a pump with a capacity of 500 l / sec can overcome excess water volume and avoid runoff and be effective in dealing with the excess water in the Brimob retention basin.

Page 2 of 10 | Total Record : 94