cover
Contact Name
Dr. Basari
Contact Email
basari.st@ui.ac.id
Phone
+6221-29120943
Journal Mail Official
editor_mst@ui.ac.id
Editorial Address
Universitas Indonesia ILRC Building, 1st Floor, Depok 16424, Indonesia Kota depok, Jawa barat INDONESIA
Location
Kota depok,
Jawa barat
INDONESIA
Makara Journal of Technology
Published by Universitas Indonesia
ISSN : 23552786     EISSN : 23564539     DOI : https://doi.org/10.7454/mjt
MAKARA Journal of Technology is a peer-reviewed multidisciplinary journal committed to the advancement of scholarly knowledge and research findings of the several branches of Engineering and Technology. The Journal publishes new results, original articles, reviews, and research notes whose content and approach are of interest to a wide range of scholars. It also offers rapid dissemination. MAKARA Journal of Technology covers the recent research in several branches of engineering and technology include Electrical & Electronics Engineering, Computer Engineering, Mechanical Engineering, Chemical & Bioprocess Engineering, Material & Metallurgical Engineering, Industrial Engineering, Civil & Architecture Engineering, and Marine Engineering. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the engineering & technology and the effect of rapid publication on the research of others. This journal, published three times each year, is where readers look for the advancement of discoveries in engineering and technology.
Articles 485 Documents
The use of Red Cabbage’s anthocyanine extract as a photosensitizer on a Dye-Sensitized Nanocrystalline TiO2 Solar Cell Maddu, Akhiruddin; Zuhri, Mahfuddin; Irmansyah, Irmansyah
Makara Journal of Technology Vol. 11, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The use of Red Cabbage’s anthocyanine extract as a photosensitizer on a Dye-Sensitized Nanocrystalline TiO2 Solar Cell. A solid-state dye-sensitized nanocrystalline TiO2 solar cell utilizing anthocyanin extract form red cabbage as photosensitizer was fabricated. The solar cell was formed in sandwich structure, which two electrodes sandwiching polymer electrolyte containing a redox couple (I-/I3 -). One of the electrodes, namely working electrode, TiO2 layer on TCO (transparent conducting oxide) coated glass substrate was sensitized with anthocyanin dye as electron donor in the system. Another electrode was a carbon sheet as a counter electrode. Gel electrolyte based on PEG (polyethylene glycol) containing a redox couple (I-/I3 -) used instead of liquid electrolyte in this photoelectrochemical cell. Two fabricated cells have an active area of 1 cm2 were soaked with anthocyanine dye for 1 hr and 24 hrs, respectively. The cells were tested by irradiation with halogen lamp of 24 Watt with intensity 4 mW/cm2 at a distance 30 cm. The testing results of the cells show an ideal I-V characteristic with output parameters: open circuit voltage (VOC) of 500 mV, short circuit current (ISC) of 5,6 μA and 7,2 μA for each cells, fill factor (FF) of 48% for both cells, energy conversion (η) of 0.023 % and 0,055 % for the cells with 1 hr and 24 hrs dye soaked, respectively.
Effect of Contact Time on Interface Reaction between Aluminum Silicon (7% and 11%) Alloy and Steel Dies SKD 61 Suharno, Bambang; Nurhayati, Neni Octapiani; Arifin, Bustanul; Harjanto, Sri
Makara Journal of Technology Vol. 11, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Effect of Contact Time on Interface Reaction between Aluminum Silicon (7% and 11%) Alloy and Steel Dies SKD 61. Die soldering (die sticking) is a defect of metal casting in which molten metal “welds” to the metallic die mold surface during casting process. Die soldering is the result of an interface reaction between the molten aluminum and the die material. Aluminum alloy with 7 and 11% silicon and SKD 61 die steel are the most common melt and die material used in aluminum die casting. This research is done to study the morphology and the characteristics of the formed AlxFeySiz intermetallic layer during interface reaction at dipping test. The samples of as-anneal SKD 61 tool steel was dipped into the molten of Al-7%Si held at temperature 680oC and into molten Al-11%Si held at temperature 710oC with the different contact time of 10 minutes; 30 minutes; and 50 minutes. The research results showed that the interface reaction can form a compact intermetallic layer with AlxFey phase and a broken intermetallic layer with AlxFeySiz phase on the surface of SKD 61 tool steel. The increasing of the contact time by the immersion of material SKD 61 tool steel in both of molten Al-7%Si and Al-11%Si will increase the thickness of the AlxFeySiz intermetallic layer until an optimum point and then decreasing. The micro hardness of the AlxFeySiz intermetallic layer depends on the content of the iron. Increasing of the iron content in intermetallic layer will increase the micro hardness of the AlxFeySiz. This condition happened because the increasing of Fe content will cause forming of intermetallic AlxFeySiz phase becomes quicker.
Limiting Maximum Drag Reduction Asymptote for the Moment Coefficient of an Enclosed Rotating Disk with Fine Spiral Grooves Budiarso, Budiarso; Watanabe, Keizo; Ogata, Satoshi
Makara Journal of Technology Vol. 11, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In this study, the limiting maximum drag reduction asymptote for the moment coefficient of an enclosed rotating disk with fine spiral grooves in turbulent flow region were obtained analytically. Analysis which were based on an assumption for a simple parabolic velocity distribution of turbulent pipe flow to represent relative tangential velocity, was carried out using momentum integral equations of the boundary layer. For a certain K- parameter the moment coefficient results agree well with experimental results for maximum drag reduction in an enclosed rotating disk with fine spiral grooves and drag reduction ratio approximately was 15 %. Additionally, the experimental results for drag reduction on a rotating disk can be explained well with the analytical results.
CO2 Absorption from Its Mixture with CH4 or N2 through Hollow Fiber Membrane Contactor using Water as Solvent Kartohardjono, Sutrasno; Anggara, Anggara; Subihi, Subihi; Yuliusman, Yuliusman
Makara Journal of Technology Vol. 11, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

CO2 Absorption from Its Mixture with CH4 or N2 through Hollow Fiber Membrane Contactor using Water as Solvent. Hollow fiber membrane contactors have been widely used as gas-liquid contactors recently such as in the CO2 absorption process from gas stream. This research aims to evaluate the effectiveness of hollow fiber membrane contactor to absorb CO2 from its mixture with CH4 or N2 using water through mass transfer and hydrodynamic tests. There are 3 membrane modules used in this research with shell diameter of 1.9 cm, length of 40 cm, outer fiber diameter of 2.7 mm and fiber number in the contactors of 10, 15 and 20. Liquid flow rates in the hollow fiber membrane contactors are varied in this research. Research results show that mass transfer coefficients in the membrane contactor increase with increasing liquid flow rate and decrease with increasing fiber number in the contactor. Flux of CO2 into water can achieve 1.4x10-9 mol CO2 /m2.s and mass transfer coefficients can achieve 1.23 x 10-7 m/s. Meanwhile, hydrodynamic test results show that water pressure drop in the membrane contactors increase with increasing fiber number in the contactors.
Ad Hoc on-Demand Distance Vector (AODV) Routing Protocol Performance Evaluation on Hybrid Ad Hoc Network: Comparison of Result of Ns-2 Simulation and Implementation on Testbed using PDA Sari, Riri Fitri; Syarif, Abdusy; Budiardjo, Bagio
Makara Journal of Technology Vol. 12, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Ad Hoc on-Demand Distance Vector (AODV) Routing Protocol Performance Evaluation on Hybrid Ad Hoc Network: Comparison of Result of Ns-2 Simulation and Implementation on Testbed using PDA. In Mobile Ad hoc NETwork (MANET), node supplemented with wireless equipment has the capacity to manage and organise autonomously, without the presence of network infrastructures. Hybrid ad hoc network, enable several nodes to move freely (mobile) to create instant communication. Independent from infrastructure. They could access the Local Area Network (LAN) or the Internet. Functionalities of ad hoc network very much dependent on the routing protocol that determines the routing around node. Ad hoc On-demand Distance Vector (AODV) is one of routing protocols in ad hoc network which has a reactive characteristic. This protocol is the most common protocol being researched and used. In this Research, AODV protocol investigation was conducted by developing a testbed using Personal Computer, several Laptops (the Linux Red Hat operation system 9.0 and Fedora Core 2), and Personal Digital Assistant (PDA). This research also made a complete package by mean of cross compilation for PDA iPAQ. In general, results obtained from the simulation of AODV protocol using Network Simulator NS-2 are packet delivery ratio 99.89%, end-to-end delay of 0.14 seconds and routing overhead of 1,756.61 byte per second. Afterwards results from simulation were compared to results from testbed. Results obtained from testbed are as follows: the packet delivery ratio is 99.57%, the end-to-end delay is 1.004 seconds and the routing overhead is 1,360.36 byte per second.
The development of Inverter Fuzzy Logic Control for Induction Motor Control by Vector Control Method in Electric Vehicle Purwanto, Era; Ashary, Mohammad; Subagio, Subagio; Purnomo, Mauridhi Heri
Makara Journal of Technology Vol. 12, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The development of Inverter Fuzzy Logic Control for Induction Motor Control by Vector Control Method in Electric Vehicle. In response to concerns about energy cost, energy dependence, and environmental damage, a rekindling of interest in electric vehicles (EV’s) has been obvious. Thus, the development of power electronics technology for EV’s will take an accelerated pace to fulfill the market needs, regarding with the problem in this paper is presented development of fuzzy logic inverter in induction motor control for electric vehicle propulsion. The Fuzzy logic inverter is developed in this system to directed toward developing an improved propulsion system for electric vehicles applications, the fuzzy logic controller is used for switching process. This paper is describes the design concepts, configuration, controller for inverter fuzzy logic and drive system is developed for this high-performance electric vehicle.
Internet Congestion Control System Rusmin, Pranoto Hidaya; Machbub, Carmadi; Harsoyo, Agung; Hendrawan, Hendrawan
Makara Journal of Technology Vol. 12, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Internet Congestion Control System. Internet congestion occurs when resource demands exceeds the network capacity. But, it is not the only reason. Congestion can happen on some users because some others user has higher sending rate. Then some users with lower sending rate will experience congestion. This partial congestion is caused by inexactly feedback. At this moment congestion are solved by the involvement of two controlling mechanisms. These mechanisms are flow/congestion control in the TCP source and Active Queue Management (AQM) in the router. AQM will provide feedback to the source a kind of indication for the occurrence of the congestion in the router, whereas the source will adapt the sending rate appropriate with the feedback. These mechanisms are not enough to solve internet congestion problem completely. Therefore, this paper will explain internet congestion causes, weakness, and congestion control technique that researchers have been developed. To describe congestion system mechanisms and responses, the system will be simulated by Matlab.
Biomass Production Chlorella Vulgaris Buitenzorg Using Series of Bubble Column Photo Bioreactor with a Periodic Illumination Wijanarko, Anondho; Dianursanti, Dianursanti; Muryanto, Muryanto; Simanjuntak, Josia; Kencana Wulan, Praswasti Pembangun Dyah; Hermansyah, Heri; Gozan, Misri; Soemantojo, Roekmijati Widaningroem
Makara Journal of Technology Vol. 12, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Chlorella vulgaris Buitenzorg cultivation using three bubble column photo bioreactors arranged in series with a volume of 200 mL for 130 hours shows an increase of biomass production of Chlorella vulgaris Buitenzorg up to 1.20 times and a decrease of the ability of CO2 fixation compared to single reactor at a periodic sun illumination cycle. The operation conditions on cultivation are as following: T, 29.0oC; P,1 atm.; UG, 2.40 m/h; CO2, 10%; Benneck medium; and illumination source by Phillip Halogen Lamp 20W /12V/ 50Hz. Other research parameters such as microbial carbon dioxide transferred rate (qco2), CO2 transferred rate (CTR), energy consumption for cellular formation (Ex), and cultural bicarbonate species concentration [HCO3] also give better results on series of reactor.
A Study of CO2 Absorption Using Jet Bubble Column Setiadi, Setiadi; Hadiyani, Nita Tania; Hantizen, Hantizen; Supramono, Dijan
Makara Journal of Technology Vol. 12, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

A Study of CO2 Absorption Using Jet Bubble Column. The phenomenon of plunging jet gas-liquid contact occurs quite often in nature, it's momentum carries small air bubbles with it into the reactor medium. The momentum of the liquid stream can be sufficient to carry small bubbles completely to the bottom of the vessel. A stream of liquid falling toward a level surface of that liquid will pull the surrounding air along with it. It will indent the surface of the liquid to form a trumpet-like shape. If the velocity of the stream is high enough, air bubbles will be pulled down, i.e. entrained into the liquid. This happens for two main reasons: air that is trapped between the edge of the falling stream and the trumpet-shaped surface profile and is carried below the surface. This study investigates the potential of a vertical liquid plunging jet for a pollutant contained gas absorption technique. The absorber consists of liquid jet and gas bubble dispersed phase. The effects of operating variables such as liquid flowrate, nozzle diameter, separator pressure, etc. on gas entrainment and holdup were investigated. The mass transfer of the system is governed by the hydrodynamics of the system. Therefore a clear and precise understanding of the above is necessary : to characterize liquid and gas flow within the system, 2. Variation in velocity of the jet with the use of different nozzle diameters and flow rates, 3. Relationship between the liquid and entrained airflow rate, 4. Gas entrainment rate and gas void fraction.
The Effect of Ozone and Zeolite Concentration to the Performance of the Treatment of Wastewater Containing Heavy Metal Using Flotation Process Karamah, Eva Fathul; Bismo, Setijo; Simbolon, Hotdi M.
Makara Journal of Technology Vol. 12, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Effect of Ozone and Zeolite Concentration to the Performance of the Treatment of Wastewater Containing Heavy Metal Using Flotation Process. Industrial wastewater which contains heavy metal cannot be disposed to the environment directly, due to its toxicity. In this research, separation of metal from wastewater was conducted by sorptive flotation method, using Lampung natural zeolite as bonding agent. The most common diffuser used in the flotation process is air or oxygen. In this research, ozone is used as diffuser because it is a stronger oxidant and more dissolvable in water than oxygen. Besides, ozone is a coagulant aid and disinfectant. With ozone as diffuser, it is expected that the process become faster with higher efficiency. This research was conducted to determine ozone effectiveness as diffuser, compared with other diffuser, and also to determine optimum concentration and effectiveness of zeolite in flotation of iron, nickel and copper. The research result shows that separation of iron with air diffuser is 90.8%, air-oxygen diffuser is 95.7%, air-ozone (from air) diffuser is 99.7%, and air-ozone (from oxygen) diffuser is 99.7%. Natural zeolite is effective as bonding agent with optimum concentration equal to 2 gram/liter, producing separation percentage for iron equal to 99.70%, copper equal to 88.98% and Nickel equal to 98.46%.

Page 11 of 49 | Total Record : 485