cover
Contact Name
Sri Ngudi Wahyuni
Contact Email
ijcsr@subset.id
Phone
+6282138594141
Journal Mail Official
ijcsr@subset.id
Editorial Address
Jl. Gatotkaca, Janti Buana Asri 4 Nomor B7, Jurugentong, Banguntapan, Bantul, Yogyakarta, Indonesia
Location
Kab. bantul,
Daerah istimewa yogyakarta
INDONESIA
The Indonesian Journal of Computer Science Research
Published by Hemispheres Press
ISSN : -     EISSN : 29639174     DOI : https://doi.org/10.59095/ijcsr
Core Subject : Science,
The Indonesian Journal of Computer Science Research (IJCSR) adalah jurnal yang memuat naskah ilmiah dari peneliti, akademisi, maupun praktisi, berupa hasil penelitian, tinjauan pustaka ( literature review ) dan/atau bentuk karya tulis ilmiah lainnya, yang khusus mengkaji bidang Ilmu Komputer antara lain sebagai berikut : Computational and algorithm Numerical Methods and Algorithms Autonomic Computing Big Data Computer and Network Architecture Cloud Computing Cluster Computing Workflow Design and Practice Data Mining Artificial Intelligence Web-Based Computing Scientific Visualization Computer Graphics Pattern Recognition Virtual Reality Augmented Reality Geometric Modeling Industry 4.0 Bioinformatics Digital Forensic
Articles 53 Documents
Peningkatan Akurasi Deteksi Liver Disease melalui Hyperparameter Tuning pada Algoritma Random Forest Azzaria, Cinta; Erna Daniati; Ristyawan, Aidina
The Indonesian Journal of Computer Science Research Vol. 4 No. 2 (2025): Juli
Publisher : Hemispheres Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59095/ijcsr.v4i2.198

Abstract

Penyakit liver merupakan salah satu penyebab utama kematian global, sehingga deteksi dini sangat penting untuk mendukung penanganan medis yang cepat dan tepat. Penelitian ini bertujuan meningkatkan akurasi deteksi penyakit liver menggunakan algoritma Random Forest. Dataset yang digunakan adalah Indian Liver Patient Dataset (ILPD) yang terdiri dari 583 entri. Penelitian mengikuti pendekatan CRISP-DM dan menerapkan teknik SMOTE untuk mengatasi ketidakseimbangan kelas serta Grid Search CV untuk optimasi hyperparameter. Berbeda dengan penelitian sebelumnya, studi ini menggabungkan SMOTE dan Grid Search secara sistematis untuk meningkatkan performa model pada dataset ILPD. Hasil menunjukkan bahwa akurasi model meningkat dari 74% menjadi 75%, dengan perbaikan pada precision dan recall, khususnya untuk kelas pasien yang terdiagnosis liver disease.Temuan ini menunjukkan bahwa Random Forest yang dioptimalkan melalui pendekatan ini dapat menjadi metode andal dalam mendukung diagnosis dini penyakit liver.
Implementasi Metode Waterfall pada Sistem Informasi Laporan Hasil Belajar Siswa Berbasis Website Sangaji, Sangaji; Anggita, Sharazita Dyah; Wulandari, Irma Rofni
The Indonesian Journal of Computer Science Research Vol. 4 No. 2 (2025): Juli
Publisher : Hemispheres Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59095/ijcsr.v4i2.203

Abstract

Penelitian ini bertujuan untuk merancang dan mengimplementasikan sistem informasi laporan hasil belajar siswa berbasis web pada Kelompok Bermain Melati, sebagai solusi terhadap permasalahan yang timbul dari pengolahan data yang belum terotomatisasi. Pengolahan data yang dilakukan menimbulkan ketidak efisienan waktu karena berpotensi terjadinya kesalahan dan kehilangan data. Penerapan model pengembangan Waterfall di penelitian ini dilakukan secara terstruktur dimulai dengan tahap analisis kebutuhan, perancangan sistem, Implementasi dan pengajian. Pendekatan berbasis web pada sistem ini dilakukan untuk dapat memberikan kemudahan bagi pengguna. Pengajian sistem dilakukan dengan metode blackbox testing pada setiap fitur yang ada untuk dapat mengevaluasi fungsionalitas dari fitur tersebut. Hasil pengujian menunjukkan bahwa seluruh fitur berfungsi dengan baik sesuai dengan spesifikasi yang telah ditetapkan, tanpa ditemukan kesalahan fungsional. Berdasarkan hal tersebut proses pengolahan data serta penyusunan laporan menjadi lebih sistematis dan meminimalisir kesalahan yang akan terjadi
Evaluasi Kesesuaian Implementasi SIMRS Khanza Berdasarkan Model Human-Organization-Technology Fit (HOT-FIT) Alamsyah, Nur; Daniati, Erna; Ristyawan, Aidina
The Indonesian Journal of Computer Science Research Vol. 4 No. 2 (2025): Juli
Publisher : Hemispheres Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59095/ijcsr.v4i2.204

Abstract

Sistem Informasi Manajemen Rumah Sakit (SIMRS) merupakan kunci peningkatan efisiensi operasional dan mutu layanan. Wawancara dengan pengguna di unit rekam medis RS Bhayangkara Nganjuk mengungkap kendala seperti inkonsistensi data, kegagalan tampilan informasi, dan kesulitan penyusunan laporan. Penelitian ini mengevaluasi keberhasilan implementasi SIMRS sekaligus mengidentifikasi faktor determinannya menggunakan model Human‑Organization‑Technology Fit (HOT‑FIT). Pengumpulan data dilakukan melalui wawancara, studi literatur, dan kuesioner HOT‑FIT pada 420 pengguna (sampel ditentukan dengan rumus Slovin). Analisis—dijalankan dengan SPSS—mencakup uji validitas, reliabilitas (Cronbach’s Alpha 0,984), uji t, uji F, dan koefisien determinasi. Ketujuh variabel HOT‑FIT berpengaruh signifikan terhadap keberhasilan sistem, dengan R² 0,879 yang menunjukkan 87,9 % variabilitas keberhasilan dapat dijelaskan oleh model. Hasil ini menegaskan bahwa implementasi SIMRS tergolong berhasil namun tetap memerlukan peningkatan pada mutu sistem, mutu informasi, mutu layanan, intensitas penggunaan, kepuasan pengguna, dan dukungan organisasi
Analisis Performa Logistic Regression dan Random Forest dalam Klasifikasi Kelayakan Penerimaan Kredit Adrian, Andreas; Verawati, Ike
The Indonesian Journal of Computer Science Research Vol. 4 No. 2 (2025): Juli
Publisher : Hemispheres Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59095/ijcsr.v4i2.205

Abstract

Penentuan kelayakan penerimaan kredit merupakan proses yang sangat penting dalam industri perbankan dan keuangan. Hal ini sangat berpengaruh bagi badan keuangan tersebut, bahkan dapat menyebabkan kondisi finansial badan keuangan tersebut tidak sehat karena kesalahan dalam keputusan kelayakan kredit. Machine learning hadir untuk meminimalisir kesalahan tersebut. Untuk meningkatkan akurasi dan efisiensi dalam klasifikasi kelayakan kredit, penelitian ini berfokus pada penerapan dua model machine learning, yaitu Logistic Regression dan Random Forest Classifier. Logistic Regression dipilih karena kemampuannya dalam mengidentifikasi hubungan linear antara variabel input dan output, sedangkan Random Forest Classifier memiliki keunggulan dalam menangani dataset yang kompleks dan non-linear. Tujuan utama dari penelitian ini adalah untuk membandingkan performa kedua model tersebut dalam tugas klasifikasi kelayakan kredit. Perbandingan dilakukan dengan tahapan Studi Literatur, Akuisisi Data (Pengumpulan data) yang mengambil dataset perbankan public di kaggle, EDA, Pre-Processing, Modelling, Evaluasi, dan Analisis Evaluasi Model. Dataset yang akan digunakan mencakup informasi data finansial dari nasabah. Perbandingan performa pada penelitian ini menggunakan matrix akurasi, precision, recall, F1-Score dan AUC-ROC untuk mengevaluasi kinerja masing-masing model. Penelitian ini menghasilkan bahwa model random forest lebih unggul dengan skor Akurasi 0.95, Presisi 0.93, Recall 0.98 dan F1 Score 0.96. Skor AUC yang digunakan untuk melihat seberapa baik model dalam membedakan class 1 dan 0 mencapai 0.98. Hasil penelitian ini diharapkan mampu memberikan rekomendasi yang bermanfaat bagi industri perbankan dalam memilih model yang paling tepat untuk penilaian kelayakan kredit
Perbandingan Algoritma Machine Learning Dalam Analisis Sentimen Isu Gempa Megathrust Herdika Septa Aulia, Ewanda; Daniati, Erna; Muzaki , Muhammad Najibulloh
The Indonesian Journal of Computer Science Research Vol. 4 No. 2 (2025): Juli
Publisher : Hemispheres Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59095/ijcsr.v4i2.206

Abstract

Isu gempa megathrust menjadi perhatian publik yang signifikan mengingat potensi dampaknya yang besar di wilayah Indonesia. Meningkatnya kesadaran dan kekhawatiran masyarakat terhadap isu ini tercermin dari banyaknya diskusi di berbagai platform media sosial, khususnya YouTube. Melihat fenomena tersebut, penelitian ini dilakukan untuk menganalisis dan mengklasifikasikan sentimen publik terhadap video bertema gempa megathrust. Tujuan utama dari penelitian ini adalah untuk mengkaji persepsi masyarakat melalui komentar di YouTube menggunakan pendekatan machine learning. Penelitian ini menggunakan tiga algoritma utama, yaitu Support Vector Machine dengan tiga jenis kernel yaitu linear, RBF, dan polynomial; Naive Bayes dengan Bernoulli dan Multinomial; serta Decision Tree. Data dikumpulkan melalui teknik scraping pada kolom komentar video YouTube yang relevan, dengan total data sebanyak 4337 komentar. Proses analisis dilakukan melalui sembilan tahap, yaitu pengumpulan data, preprocessing teks, pelabelan sentimen menggunakan lexicon VADER, pembobotan kata menggunakan TF-IDF, penyeimbangan data dengan SMOTE, seleksi fitur dengan mutual information, pembuatan model klasifikasi, evaluasi kinerja model, dan analisis hasil. Evaluasi performa model dilakukan menggunakan metrik accuracy, precision, recall, dan F1-score. Hasil menunjukkan bahwa algoritma SVM dengan kernel linear memberikan performa terbaik dengan akurasi mencapai 87%. Temuan ini mengonfirmasi bahwa pendekatan machine learning efektif untuk menganalisis opini publik terhadap isu kebencanaan, serta dapat menjadi landasan dalam pengambilan kebijakan mitigasi risiko bencana berbasis persepsi masyarakat.
Pendekatan BERT Dalam Analisis Sentimen Terhadap Kominfo Di Media Sosial X Faruqziddan, Muhammad; Daniati, Erna; Muzaki, Muhammad Najibulloh
The Indonesian Journal of Computer Science Research Vol. 4 No. 2 (2025): Juli
Publisher : Hemispheres Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59095/ijcsr.v4i2.207

Abstract

Perkembangan media sosial telah mengubah pola komunikasi masyarakat, termasuk dalam menyampaikan opini terhadap isu-isu publik. Salah satu isu yang sering dibahas adalah Kementerian Komunikasi dan Informatika (Kominfo). Media sosial X menjadi salah satu platform utama yang digunakan masyarakat untuk menyuarakan pendapat secara terbuka. Oleh karena itu dibutuhkan metode analisis yang mampu menangkap dan memahami sentimen publik. Penelitian ini bertujuan untuk menganalisis sentimen masyarakat terhadap Kominfo menggunakan algoritma Bidirectional Encoder Representations from Transformers (BERT), yang dikenal memiliki kemampuan unggul dalam memahami text. Data dikumpulkan melalui teknik scraping dengan kata kunci "kominfo", kemudian dilakukan tahapan pre-processing seperti cleaning, case folding, translation, tokenization, stopwords removal, dan stemming. Data yang telah dibersihkan kemudian diberi label sentimen menggunakan metode leksikon VADER dan diklasifikasikan ke dalam tiga kategori, positif, netral, dan negatif. Model BERT dilatih menggunakan data yang telah diproses dengan pembagian 80% untuk training, 10% validation, dan 10% testing. Hyperparameter yang digunakan meliputi epoch sebanyak 10, batch size 16, max length 100, learning rate 2e-5, dan dropout 0.3. Hasil evaluation menunjukkan bahwa model BERT mampu mengklasifikasikan sentimen dengan accuracy sebesar 84%, serta nilai precision, recall, dan F1-score yang seimbang di seluruh kelas. Kesimpulan dari penelitian ini adalah bahwa BERT efektif dalam menganalisis opini publik terhadap instansi pemerintah melalui media sosial X.
Penerapan Bi-LSTM Untuk Named Entity Recognition Pada Teks Bahasa Indonesia Pradhana, Akmal Hisyam; Daniati, Erna; Muzaki, Muhammad Najibulloh
The Indonesian Journal of Computer Science Research Vol. 4 No. 2 (2025): Juli
Publisher : Hemispheres Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59095/ijcsr.v4i2.208

Abstract

Penelitian ini bertujuan untuk membangun dan mengevaluasi model Named Entity Recognition (NER) berbasis arsitektur Bidirectional Long Short-Term Memory (Bi-LSTM) yang mampu mengenali entitas secara otomatis dalam teks berbahasa Indonesia. Urgensi penelitian ini terletak pada masih minimnya sistem NER yang efektif untuk bahasa Indonesia, terutama pada teks non-formal yang memiliki struktur dan kosakata unik. Permasalahan utama yang diangkat adalah rendahnya akurasi ekstraksi entitas akibat keterbatasan model-model NER sebelumnya dalam memahami konteks bahasa Indonesia yang kompleks dan tidak baku. Data dikumpulkan dari korpus teks Indonesia yang telah dianotasi format BIO (Beginning-Inside-Outside) dan diklasifikasikan dalam jenis entitas seperti Person, Location, Organization, Quantity, dan Time. Proses melibatkan preprocessing (tokenisasi, pelabelan BIO, dan padding), pembangunan arsitektur Bi-LSTM, pelatihan model teknik train-test split (80:20), serta evaluasi menggunakan metrik Precision, Recall, F1-Score, dan confusion matrix. Hasil penelitian menunjukkan model Bi-LSTM berhasil mencapai akurasi keseluruhan sebesar 99% dan F1-Score sebesar 0.99, dengan performa terbaik pada entitas ORGANIZATION dan PERSON. Penelitian ini berkontribusi pada pengembangan NER berbasis budaya lokal serta potensial diterapkan dalam pendidikan, pelestarian budaya, dan pencarian informasi kontekstual berbahasa Indonesia.
Pemodelan Klasifikasi Popularitas Produk Skincare Menggunakan Support Vector Machine (SVM): Studi Komparatif Kinerja Kernel. Kamilatutsaniya, Nila; Daniati, Erna; Muzaki, M. Najibulloh
The Indonesian Journal of Computer Science Research Vol. 4 No. 2 (2025): Juli
Publisher : Hemispheres Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59095/ijcsr.v4i2.209

Abstract

Pertumbuhan pasar digital telah meningkatkan variasi produk skincare di platform seperti Sephora. Kondisi ini yang pada akhirnya mendorong konsumen menghadapi tantangan dalam penentuan produk yang populer. Oleh karena itu, penelitian ini dilakukan untuk membantu mengidentifikasi popularitas produk skincare melalui pengembangan model klasifikasi berbasis algoritma machine learning. Tujuan penelitian ini adalah membangunodel klasifikasi untuk mengidentifikasi popularitas produk berdasarkan karakteristik produk serta menerapkan algoritma Support Vector Machine (SVM) dengan tiga jenis kernel: linear, RBF, dan polynomial. Data sekunder diperoleh dari Kaggle yang memuat informasi produk skincare di Sephora, dan diolah melalui tahapan CRISP-DM, mulai dari pemahaman bisnis, pembersihan data, labeling popularitas berdasarkan threshold jumlah “loves” dan “reviews”, penyeimbang data dengan Teknik SMOTE, hingga pemodelan menggunakan algoritma Support Vector Machine (SVM) dengan tiga jenis kernel serta evaluasi. Hasil pengujian menunjukkan bahwa kernel linear memberikan akurasi tertinggi sebesar 98,52%. Berdasarkan hasil seleksi fitur, faktor utama yang memengaruhi popularitas produk adalah jumlah ulasan (log_n_of_reviews), jumlah suka (log_n_of_loves), serta rasio interaksi pengguna seperti reviews_to_loves_ratio dan return_on_reviews. Penelitian ini memberikan kontribusi dalam pengembangan model prediksi berbasis machine learning untuk mendukung pengambilan keputusan dalam pemasaran produk skincare
Studi Kinerja Algoritma K-Nearest Neighbors (KNN) untuk Klasifikasi Pasien Diabetes Erni Seniwati; Edelweiss Rinjani Bawana; Peni Febrian Kristami; Arsellina Milka Martin; Ninik Tri Hartanti
The Indonesian Journal of Computer Science Research Vol. 4 No. 2 (2025): Juli
Publisher : Hemispheres Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59095/ijcsr.v4i2.219

Abstract

Penyakit diabetes merupakan salah satu penyakit kronis yang jumlah penderitanya terus meningkat setiap tahun termasuk di Indonesia. Deteksi dini dan klasifikasi yang akurat sangat penting untuk membantu proses diagnosis dan penanganan yang tepat sehingga meminimalkan resiko komplikasi. Penelitian ini bertujuan untuk membangun model klasifikasi pasien diabetes serta mengkaji kinerja algoritma K-Nearest Neighbor (KNN) dalam melakukan klasifikasi pasien diabetes berdasarkan data medis. Dataset yang digunakan dalam penelitian ini adalah Pima Indians Diabetes Dataset, yang berisi informasi kesehatan pasien seperti kehamilan (Pregnancies), tingkat glukosa (Glucose), tekanan darah (Blood Pressure), kadar insulin (Insulin), nilai BMI (BMI), usia (Age) dan status diagnosa pasien (Outcome). Proses penelitian mencakup 6 tahapan kegiatan yang dilakukan. Pada penelitian ini menghasilkan parameter nilai k=8 adalah nilai k optimal. Evaluasi performa model menggunakan confusion matrix yang menghasilkan akurasi yang menghasilkan 0.83 atau 83%, presisi (0.78), recall (0.61) dan F1-score (0.69). Model juga diimplementasikan secara interaktif menggunakan Jupyter Notebook serta penggunaan Streamlit sebagai userinterface sehingga memungkinkan pengguna dapat melakukan konsultasi dengan memasukkan data medis dan sekaligus mendapatkan hasil prediksi. Hasil pengujian menunjukkan bahwa algoritma KNN mampu memberikan performa yang cukup baik dalam mengklasifikasikan pasien yang terkena diabetes dan tidak terkena diabetes.
Pengembangan Media Pembelajaran Interaktif Tata Surya Berbasis Augmented Reality Putra, Nanda Dwi; Rusmana, Najwa Rokhan; Muttakin, Muhammad; Irsyad, Hidayat Hatta; Syafwan, Muhammad Ikram; Putra, Dimas Panji Eka Jala
The Indonesian Journal of Computer Science Research Vol. 4 No. 2 (2025): Juli
Publisher : Hemispheres Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59095/ijcsr.v4i2.227

Abstract

Pembelajaran konsep tata surya di sekolah dasar sering kali terkendala oleh keterbatasan media konvensional yang kurang mendukung pemahaman spasial dan visual siswa. Untuk mengatasi hal ini, penelitian ini bertujuan mengembangkan media pembelajaran interaktif berbasis Augmented Reality (AR) yang memungkinkan siswa berinteraksi langsung dengan visualisasi 3D planet dalam lingkungan nyata. Aplikasi dikembangkan menggunakan Unity 3D dan Vuforia SDK pada platform Android, dengan metode marker-based tracking untuk menampilkan model planet secara real-time saat marker discan. Hasil pengembangan menunjukkan aplikasi mampu menyajikan tampilan 3D planet yang informatif dan interaktif, dilengkapi narasi edukatif serta antarmuka yang mudah digunakan. Kesimpulan dari penelitian ini menunjukkan bahwa media pembelajaran berbasis AR dapat menjadi alternatif inovatif dan menarik dibanding metode konvensional, serta membantu meningkatkan pemahaman dan keterlibatan siswa. Secara aplikatif, media ini memiliki potensi besar untuk diterapkan dalam pembelajaran IPA di sekolah dasar, terutama untuk menjembatani konsep abstrak menjadi pengalaman belajar yang konkret dan menyenangkan.