cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 709 Documents
An investigation of the Steady-State and Fatigue Problems of a Small Wind Turbine Blade Based on the Interactive Design Approach Khalil Deghoum; Mohammed T Gherbi; Muhsin J Jweeg; Hakim S Sultan; Azher M Abed; Oday I Abdullah; Necib Djilani
International Journal of Renewable Energy Development Vol 12, No 1 (2023): January 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.48616

Abstract

A wind turbine blade is an essential system of wind energy production. During the operation of the blade, it is subjected to loads resulting from the impact of the wind on the surface of the blade. This leads to appear large deflections and high fatigue stresses in the structure of blades. In this paper, a 5 kW horizontal axis wind turbine blade model is designed and optimized using a new MATLAB code based on blade element momentum (BEM) theory.The aerodynamic shape of the blade has been improved compared with the initial design, the wind turbine power has been increased by 7% and the power coefficient has been increased by 8%.  The finite Element Method was used to calculate the loads applied to the blade based on Computational Fluid Dynamics (CFD) and BEM theory.High agreements were obtained between the results of both approaches (CFD and BEM).The ANSYS software was also used to simulate and optimize the structure of the blade by applying variable static loads 3.3, 6, and 8.3 kg and compared the results with the experimental results. It was reduced the maximum deflectionswith 37%, 42.85%, and 42.61% when using CFRP material and 4.5%, 15.45%, and 16.19% for GFRP material that corresponds to the applied forces. Based on the results, the mass of the optimized model decreased by 47.86% for GFRP and 71.24% for CFRP. IEC 61400.2 standard was used to estimate thefatigue loads, damage, blade life prediction, and verify blade safety usinga Simplified Load Model(SLM) and FAST software. It was found that the blade will be safe under extreme wind loads, and the lifetime of the wind blade (GFRP) is 5.5 years and 10.25 years,according to SLM and FAST software, respectively. At the same time, the lifetime of the wind blade (CFRP)is more than 20 years, according to the two applied methods.
Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation Abdullah Abdullah; Dessy Ariyanti
International Journal of Renewable Energy Development Vol 1, No 1 (2012): February 2012
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.1.1.6-9

Abstract

Ethanol is one of renewable energy, which considered being an excellent alternativeclean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended withgasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewableresources and the product has low emission which means environmental friendly. Ethanol can beproduced by fermentation of sugars (glucose/fructose). The constraint in the ethanol fermentationbatch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivityand cell growth can be overcome by taking the product continuously from the fermentor. Theprocess can be done by using a vacuum fermentation. The objective of this research is toinvestigate the effect of pressure and glucose concentration in ethanol fermentation. The researchwas conducted in laboratory scale and batch process. Equipment consists of fermentor withvacuum system. The observed responses were dried cells of yeast, concentration of glucose, andconcentration of ethanol. Observations were made every 4 hours during a day of experiment. Theresults show that the formation of ethanol has a growth-associated product characteristic undervacuum operation. Vacuum condition can increase the cell formation productivity and the ethanolformation, as it is compared with fermentation under atmospheric condition. The maximum cellsproductivity and ethanol formation in batch operation under vacuum condition was reached at166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivityand the yield of ethanol.
Pretreatment of Oil Palm Empty Fruit Bunch (OPEFB) at Bench-Scale High Temperature-Pressure Steam Reactor for Enhancement of Enzymatic Saccharification Fahriya Puspita Sari; Faizatul Falah; Sita Heris Anita; Kharisma Panji Ramadhan; Raden Permana Budi Laksana; Widya Fatriasari; Euis Hermiati
International Journal of Renewable Energy Development Vol 10, No 2 (2021): May 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.32343

Abstract

Upscaling of biomass pretreatment from laboratory scale to a bench-scale reactor is one of the important steps in the application of the pretreatment for pilot or commercial scale. This study reports the optimization of pretreatment conditions, namely reaction temperature and time, by one factor at a time (OFAT) method for the enhancement of enzymatic saccharification of oil palm empty fruit bunch (OPEFB). OPEFB was pretreated using high temperature-pressure steam reactor with different reaction temperatures (160, 170, 180, 190, 200 °C) and times (10, 20, 30, 40, 50 min). The effectiveness of the pretreatment was determined based on chemical compositions of raw OPEFB and OPEFB pulp and sugar production from enzymatic saccharification of the OPEFB pulp.  Solubilized components from OPEFB, such as glucose, xylose, formic acid, acetic acid, 5-hydroxymethyl furfural (HMF), and furfural in the hydrolysate that generated during steam pretreatment were also determined. Pretreatment at 180°C for 20 min provides the highest sugar yields (97.30% of glucose yield per initial cellulose and 88.86% of xylose yield per initial hemicellulose). At the optimum condition, 34.9% of lignin and 30.75% of hemicellulose are successfully removed from the OPEFB and resulted in 3.43 delignification selectivity. The relationship between severity factor and by-products generated and the sugars obtained after enzymatic saccharification are discussed. The pulp of OPEFB at the optimum condition was also characterized for its morphological characteristic by scanning electron microscopy (SEM) and crystallinity by X-ray diffractometry (XRD).  These pulp characteristics are then compared with those of the raw OPEFB. The steam pretreatment causes some fiber disruptions with more defined and opened structures and increases the crystallinity index (CrI) by 2.9% compared to the raw OPEFB.
Microbial Fuel Cells for Simultaneous Electricity Generation and Organic Degradation from Slaughterhouse Wastewater Marcelinus Christwardana; Adrianus Kristyo Prabowo; Agnes Priska Tiarasukma; Dessy Ariyanti
International Journal of Renewable Energy Development Vol 5, No 2 (2016): July 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.2.107-112

Abstract

Microbial fuel Cell (MFC) has gained a lot of attention in recent years due to its capability in simultaneously reducing organic component and generating electricity. Here multicultural rumen microbes (RM) were used to reduce organic component of slaughterhouse wastewater in a self-fabricated MFC. The objectives of this study were to determine the MFC configuration and to find out its maximum capability in organic degradation and electricity generation. The experiments were conducted by employing, different types of electrode materials, electrode size, and substrate-RM ratio. Configuration of MFC with graphite-copper electrode 31.4 cm2 in size, and substrate-RM ratio 1:10 shows the best result with current density of 318 mA m-2, potential  2.4 V, and achieve maximum power density up to 700 mW m-2. In addition, self-fabricated MFC also shows its ability in reducing organic component by measuring the chemical oxygen demand (COD) up to 67.9% followed by increasing pH from 5.9 to 7.5. MFC operating at ambient condition (29oC and pH 7.5), is emphasized as green-technology for slaughterhouse wastewater treatment. Article History: Received March 26, 2016; Received in revised form June 20, 2016; Accepted June 25, 2016; Available onlineHow to Cite This Article: Prabowo, A.K., Tiarasukma, A.P., Christwardana, M. and Ariyanti, D. (2016) Microbial Fuel Cells for Simultaneous Electricity Generation and Organic Degradation from Slaughterhouse Wastewater. Int. Journal of Renewable Energy Development, 5(2), 107-112.http://dx.doi.org/10.14710/ijred.5.2.107-112 
Emissions Characteristics and Engine Performance from the Interaction Effect of EGR and Diesel-Ethanol Blends in Diesel Engine Mohammed Ali Fayad; Moafaq Kaseim Al-Ghezi; Sanaa A Hafad; Slafa I Ibrahim; Marwa K Abood; Hind A Al-Salihi; Louay A Mahdi; Miqdam Tariq Chaichan; Hayder Abed Dhahad
International Journal of Renewable Energy Development Vol 11, No 4 (2022): November 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.45051

Abstract

Recently, most of the researchers focused on provide lower greenhouse gas emissions that emitted from diesel engines by using renewable fuels to be good alternative to the conventional diesel fuel. Ethanol can be derived from renewable sources such as sugar cane, corn, timber and dates. In the current study, the ethanol fuel used in the tests was derived from the dates. The effects of using exhaust gas recirculation (EGR) diesel-ethanol blend (E10) with on engine performance and emissions characteristics have been studied in diesel engine under various engine loads. This study focused the use of oxygen in the bio-ethanol composition to compensate for the decrease occurred by the addition of EGR, which improves the engine performance and reduces its emissions. In this experiment, the ratios of EGR were 10%, 20% and 30% as well as 10% ratio of ethanol was blended into the diesel fuel blend under fixed engine speed. A traditional (without additional systems to reduce emissions) four cylinders direct injection (DI) diesel engine was used for all tests. The brake specific fuel consumption (BSFC) increased with increasing the EGR ratio by 10%, 20% and 30% by 18.7%, 22.4% and 37.4%, respectively. The thermal efficiency decreased under variable conditions of engine load for different ethanol blends. Furthermore, the emissions of NOX decreased when fuelled B10 into the engine in comparison with diesel under low engine load. Significant reduction in the NOx emissions were found when applied EGR in the tests than to the absence EGR for E10 blend and diesel. The NOx reduction rate was 12.3%, 30.6% and 43.4% when EGR rate was 10%, 20% and 30%, respectively. In addition, the concentrations of HC and CO emissions decreased more by 8.23% and 6.4%, respectively, when using E10 in comparison with the diesel for various engine loads. It is indicated that the oxygen reduction by EGR effect was compensated from ethanol blend combustion. The results showed that the combination use of E10 and EGR leads to significant reduction in engine emissions accompanied with partial reduction in the engine performance. 
Experimental thermal and electrical performances of a PVT-air collector coupled to a humidification-dehumidification (HDH) cycle Ahmed Ghazy
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.51808

Abstract

Despite their low electrical efficiencies, PVs are widely used to generate electricity from abundant solar energy. In order to maximize the utilization of incident solar energy, PVT collectors have been used to simultaneously generate electricity and thermal energy. Furthermore, combining PVTs with humidification-dehumidification (HDH) cycles can provide electricity and potable water in remote, arid rural areas that are not connected to the grid. In this paper, a PVT-air collector was coupled to an air-heated closed HDH cycle. Air was heated within the PVT collector and humidified by saline water spray inside the humidifier. Fresh water was produced by cooling humid air inside a dehumidifier that is cooled by saline water. The thermal and electrical performances of the PVT-HDH system were experimentally studied and compared to the electrical performance of a PV module with similar characteristics. The results demonstrated a significant decrease in PV temperature within the PVT-HDH system, which resulted in a 20% increase in the output power of the PVT-HDH system at midday compared to the identical PV module. In addition, the PVT-HDH system produced about 3.8 liters of water distillate for a PV module surface area of 1.48 m × 0.68 m, which contributed about 38% to the overall efficiency of the PVT-HDH system.
Empowering Distributed Solar PV Energy for Malaysian Rural Housing: Towards Energy Security and Equitability of Rural Communities N.A. Ahmad; H. Byrd
International Journal of Renewable Energy Development Vol 2, No 1 (2013): February 2013
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2.1.59-68

Abstract

This paper illustrates on how Malaysia’s development landscapes has been poweredby cheap oil and gas making it dependent and addicted on using large amounts of fossil fuels. As acountry that is primarily depended on fossil fuels for generating power supply, Malaysia needs tocogitate of long-term energy security due to fossil fuel depletion and peak oil issues. Loss of theseresources could leadto thereduction of power generation capacitywhich will threaten the stabilityof the electricity supply in Malaysia. This could potentially influence in an increase in electricitycosts which lead to a phase of power scarcity and load shedding for the country. With the risk ofinterrupted power supplies, rural households, especially those of low-income groups areparticularly vulnerable to the post-effects of a power outage and an inequitable distribution to thepeople. Distributed generation of electricity by solar PVs diminishes the vulnerability of thesehouseholds and can also offer an income to them by feeding the power supply to the national gridthrough Feed-in Tariff scheme. At the moment, the deployment of solar PV installations is still inthe introductory stage in Malaysia, where roof-mounted PV panels are only available to commercialand urban residential buildings. This is due to the lack of a suitable renewable energy policy forrural households and the high cost of the solar PV technology. This paper will put forward ananalysis for incorporating solar photovoltaic on roofs of rural houses by identifying the energyconsumption of these households and the extent to which PVs can alleviate electricity insecurity.The results present significant potential for distributed PV power generation in rural areas inMalaysia which shown a considerable amount of electricity needed to be harvested from roofmountedsolar PV for rural people in Malaysia.
GIS-Based Biomass Energy Sustainability Analysis Using Analytical Hierarchy Process: A Case Study in Medellin, Cebu Wenyville Nabor Galang; Ian Dominic Tabañag; Michael Loretero
International Journal of Renewable Energy Development Vol 10, No 3 (2021): August 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.0.33260

Abstract

The increasing demand for energy accounts for an alternative energy source. The search for biomass being abundant in an agricultural country is a suitable option to power a community. This paper used Analytical Hierarchy Process (AHP), which includes the organized hierarchy of various selection criteria, the assessment of the relative value of criteria, the comparison and an aggregate rating of the alternatives for each criterion. Specifically, the methodology used was the combination of multi-criteria and weighted-overlay analysis in a Geographical Information System (GIS) environment to provide a spatial overview of the sustainable location for sugarcane residues production in Medellin, Cebu. The study was able to identify Caputatan Sur and Canhabagat as sustainable locations for sugarcane residue production with respect to topography, cultivation area and accessibility. These locations represent 26% of the total cultivation area and average sugarcane production of the locality. The result of this study is an initial step in the support for the utilization of sugarcane residues to answer energy demand in remote areas and further promote the use of indigenous resources for energy generation.
Study of Fabricated Solar Dryer of Tomato Slices under Jordan Climate Condition Abdullah Nasrallah Olimat
International Journal of Renewable Energy Development Vol 6, No 2 (2017): July 2017
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.6.2.93-101

Abstract

The objective of the current study was to investigate experimentally, the performance of a fabricated solar dryer under Jordan climate condition during the summer of 2013. The temporal variations of temperature difference between absorber plate and ambient temperature were obtained in the results and its influence on the performance of solar flat plate collector was examined. The effects of absorber plate temperature, ambient temperature and wind heat transfer coefficient on the top heat loss coefficient were also investigated. The results showed that the efficiency of the collector ranging between 45 to 66 % which affected significantly by the amount of solar irradiation during the day. Only top heat loss was taken into considerations, since other losses were very small and might be negligible. Also the results confirmed that the performance of collector was maximum when the difference between plate and ambient temperatures was maximum. In addition, this work presented an indirect forced convection solar dryer, which consists of solar heater, fan and drying chamber. Fan was used to force the heated air through chamber to increase the drying rate.  A 500 gram of tomatoes were dried to the final moisture content 28% from 95% (w.b). The experimental moisture ratios of the tomatoes were fitted to four mathematical drying models. Comparisons between these modes are sought using statistical analysis in the results. The fit quality obtained with each model was evaluated. After the comparison with the experimental obtained values, it was concluded that polynomial equation with second order represents the drying characteristics better than the other models by indicating high value of coefficient correlation (R2= 0.999564 ) and low values of other parameters( ????2= 0.000203; RMSE= 0.01011; MBE= 0.000102 ) compare with other models. The effective moisture diffusivity was estimated using Fick's second law and was  m2/s with an average temperature of 306 K.Article History: Received January 14th 2017; Received in revised form April 28th 2017; Accepted June 10th 2017; Available onlineHow to Cite This Article: Olimat, A.N. (2017) Study of Fabricated Solar Dryer of Tomato Slices Under Jordan Climate Condition. International Journal of Renewable Energy Development, 6(2), 93-101.https://doi.org/10.14710/ijred.6.2.93-101
Study effect of extreme wind direction change on 3-bladed horizontal axis wind turbine Le Quang Sang; Takao Maeda; Yasunari Kamada
International Journal of Renewable Energy Development Vol 8, No 3 (2019): October 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.3.261-266

Abstract

The Horizontal Axis Wind Turbines (HAWT) are used very popular in the world. They were installed mainly on land. However, on the land, the wind regime change is very complex such as high turbulence and constantly changing wind direction. In the International Electrotechnical Commission (IEC) 61400-1 standard, the wind regime is devided into the normal wind conditions and the extreme wind conditions. This study will focus on the extreme wind direction change and estimate the aerodynamic forces acting on a 3-bladed HAWT under this condition. Because the extreme wind direction change may cause extreme loads and it will affect the lifetime of HAWTs. This issue is experimented in the wind tunnel in Mie University, Japan to understand these effects. The wind turbine model is the 3-bladed HAWT type and using Avistar airfoil for making blades. A 6-component balance is used to measure the forces and the moments acting on the entire wind turbine in the three directions of x, y and z-axes. This study estimates the load fluctuation of the 3-bladed wind turbine under extreme wind direction change. The results show that the yaw moment and the pitch moment under the extreme wind direction change fluctuate larger than the normal wind condition. Specifically, before the sudden wind direction change happened, the averaged maximum pitch moment MX is -1.78 Nm, and after that MX is 4.45 Nm at inrush azimuth of 0°.©2019. CBIORE-IJRED. All rights reserved

Filter by Year

2012 2026


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue