cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 709 Documents
Retraction Notice to Control of Bidirectional DC-DC Converter for Micro-Energy Grid’s DC Feeders' Power Flow Application, IJRED 11(2), 533-546
International Journal of Renewable Energy Development Vol 12, No 6 (2023): November 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.57139

Abstract

Refers to: RETRACTED: Control of Bidirectional DC-DC Converter for Micro-Energy Grid’s DC Feeders' Power Flow Application. International Journal of Renewable Energy Development, Volume 11(2), May 2022, Pages 533-546 Muhammad Hammad Saeed, Wang Fangzong,  Basheer Ahmed Kalwar ------------------------------------------------------------------------------------------------------------------------------- 
Utilization of Iles-Iles and Sorghum Starch for Bioethanol Production Kusmiyati Kusmiyati; Agus Sulistiyono
International Journal of Renewable Energy Development Vol 3, No 2 (2014): July 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.2.83-89

Abstract

The aims of this study were to convert the starches from iles-iles tubers (Amorphophalus campanulatus) and sorghum grains (Sorghum bicolor L) into bioethanol as an alternative energy. Both of these agricultural products contains a high content starches and they do not use as the major foods in Indonesia. To find out the maximum ethanol concentration and yield, both the raw materials were converted to ethanol on various process variables including the concentration of flour substrate solution (100-300 g/L), β-amylase enzyme concentration (0.8 - 6.4 ml/kg of flour ), the  concentration of dry yeast S. cerevisiae (2-15 g), and fermentation time (72-168 hours). The results showed that at the flour substrate concentration of 250 g/L produced the maximum ethanol contents of 100.29 g/L and 95.11 g/L   for iles-iles and sorghum, respectively. Effect of β-amylase enzyme in the saccharification process showed that at concentration  of 3.2 ml/kg  the maximum reducing sugar content of 204.94 g/L and 193.15 g/L  for iles-iles and sorghum substrate, respectively were generated therefore it was corresponding to the maximum ethanol production. The concentration effect of dry yeast S. cerevisiae in the fermentation stage for the iles-iles and sorghum substrate revealed that the maximum ethanol obtained at 5 g yeast activated in 100 ml medium starter resulted the highest ethanol content 100.29 g/L 95.11 g/L for iles-iles and sorghum substrate, respectively. To determine the effect of fermentation time on ethanol yield from iles-iles and sorghum substrate, the fermentation process were performed at 3, 5, and 7 days. The maximum ethanol fermentation was obtained at 5 days fermentation. The ethanol yield is calculated by weight of ethanol is formed (g) divided by the weight of flour (g). Based on the experiment results, conducted, generally the highest ethanol yield of iles-iles was higher than that of sorghum flour. The highest yield (g/g) iles-iles and sorghum flour were 71.25 and 68.92 respectively
Hydrodynamic Model and Tidal Current Energy Potential in Lepar Strait, Indonesia Harman Ajiwibowo; Munawir Bintang Pratama
International Journal of Renewable Energy Development Vol 11, No 1 (2022): February 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.37028

Abstract

Previous studies have shown the abundance of tidal energy resources in Indonesia. However, some sites have yet to be considered. The Lepar Strait, for example, is located between Bangka and Lepar Islands. This paper describes a field survey and numerical modelling conducted in the Lepar Strait. The modelling was performed using Delft3D, with the aim of determining potential sites for harvesting tidal current energy and estimate the generated power. In the modelling, the domain decomposition method was employed for model downscaling, allowing grid resolution reaching 130 x 130 m2, which is sufficient to represent the narrow gaps between tiny islands in the area of interest. The National Bathymetric (Batnas) from the Geospatial Information Agency (BIG) and the International Hydrographic Organization (IHO) tide constituents were applied for the bathymetry and tide elevation boundaries. The comparison between the surveyed and modelled data showed a good agreement. The RMSE and r for water level are > 0.95 and < 0.15, and the RMSE for velocity was <0.19. Furthermore, an energetic flow reaching 1.5 m/s was found at the Northern part of Lepar Strait, situated at the narrow gaps. The Gorlov Helical Turbine was selected in this study due to shallow water and low mean velocity. In the 2019 model, the power density and power output at the best potential sites were 2,436.94 kWh/m2 and 1,870.41 kWh, respectively. This number is higher than those previously found in Kelabat Bay. Nonetheless, it is still far below the currently promising project in Larantuka and Lombok Straits. Future research is recommended, to conduct a detailed field measurement campaign and assess the impact of energy extraction in more detail.
Improving the Efficiency of a Nuclear Power Plant Using a Thermoelectric Cogeneration System Rauf Terzi; Erol Kurt
International Journal of Renewable Energy Development Vol 7, No 1 (2018): February 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.1.77-84

Abstract

The efficiencies of nuclear power plants are rather poor having the ratio %30 by using the conventional energy/exergy tools. According to that information, large amount of energy is wasted during condensation and thrown out to the environment. Thermoelectric generator (TEG) system has a potential to be used as a heat exchanging technology to produce power with a relatively low efficiency (about 5%) and it can transform the temperature difference into electricity and generate clean electrical energy. In the present study, we offer a novel system to recover the waste heat from a VVER-1000 nuclear power plant. The heat transfer of the TEG is analyzed numerically with respect to the various temperature ranges and constant mass flow rate of the exhaust steam entering the system. In the analyses, different hot temperature ranges (35ºC, 45ºC and 55ºC) and a constant cold temperature (i.e. 18ºC) are used for a HZ-20 thermoelectric module and it has been proven that the designed TEG can produce the maximum output power of 76,956 MW for a temperature difference ∆T=37 and the conversion efficiency of 3.854% sits. The TEG is designed for the condenser of a 1000 MW nuclear power plant. It's shown that about 2.0% increasing in the power plant efficiency is expected by using the selected thermoelectric generator in the condensation cycle.Article History: Received: July 15th 2017; Received:  October 17th 2017; Accepted: February 13rd 2018; Available onlineHow to Cite This Article: Terzi, R. and Kurt, E. (2018), Improving the efficiency of a nuclear power plant using a thermoelectric cogeneration system, Int. Journal of Renewable Energy Development, 7(1), 77-84.https://doi.org/10.14710/ijred.7.1.77-84
A Review on the Recent Breakthrough Methods and Influential Parameters in the Biodiesel Synthesis and Purification S. Silviana; Didi Dwi Anggoro; H. Hadiyanto; Cantika Aulia Salsabila; Kevin Aprilio; Anisa Widia Utami; Afriza Ni&#039;matus Sa&#039;adah; Febio Dalanta
International Journal of Renewable Energy Development Vol 11, No 4 (2022): November 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.43147

Abstract

Biodiesel has recently received much attention as an energy source with numerous benefits such as high degradability, negligible toxicity, and minimal emissions of carbon monoxide gases as well as particulates. Therefore, this research aims to compare, review, and summarize the conventional and advanced methods of biodiesel production. Currently, some emerging processes that were developed for advanced biodiesel production include microwave-assisted synthesis, ultrasonic-assisted synthesis, supercritical transesterification, and liquid phase plasma discharge technology. The types of feedstocks, catalysts, and operating conditions as the influential parameters in biodiesel synthesis are also discussed. Moreover, in the purification process, the effectiveness of purification depends on the type of catalyst applied in the synthesis process. This research also reviewed and compared several commonly used purification methods such as wet and dry washing, ion exchange and precipitation, complexation, and membrane-based separation that have shown significant results along with the impacts of biodiesel production on environmental and economic sectors
Enhancing microbial fuel cell performance with carbon powder electrode modifications for low-power sensors modules Mohammed Adel Al-badani; Peng Lean Chong; Heng Siong Lim
International Journal of Renewable Energy Development Vol 13, No 1 (2024): January 2024
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2024.58977

Abstract

Microbial Fuel Cell (MFC) is a promising technology for harnessing energy from organic compounds. However, the low power generation of MFCs remains a significant challenge that hinders their commercial viability. In this study, we reported three distinct modifications to the stainless-steel mesh (SSM), carbon cloth, and carbon felt electrodes using carbon powder (CP), a mixture of CP and ferrum, and a blend of CP with sodium citrate and ethanol. The MFC equipped with an SSM and CP anode showed a notable power density of 1046.89 mW.m-2. In comparison, the bare SSM anode achieved a maximum power density of 145.8 mW m-2. Remarkably, the 3D-modified SSM with a CP anode (3D-SSM-CP) MFC exhibited a substantial breakthrough, attaining a maximum power density of 1417.07 mW m-2. This achievement signifies a significant advancement over the performance of the unaltered SSM anode, underscoring the effectiveness of our modification approach. Subsequently, the 3D-SSM-CP electrode was integrated into single-chamber MFCs, which were used to power a LoRaWAN IoT device through a power management system. The modification methods improved the MFC performance while involving low-cost and easy fabricating techniques. The results of this study are expected to contribute to improving MFC's performance, bringing them closer to becoming a practical source of renewable energy.
Performance evaluation of common rail direct injection (CRDI) engine fuelled with Uppage Oil Methyl Ester (UOME) D.N. Basavarajappa; N. R. Banapurmath; S.V. Khandal; G. Manavendra
International Journal of Renewable Energy Development Vol 4, No 1 (2015): February 2015
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.4.1.1-10

Abstract

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.
Bioconversion of Industrial Cassava Solid Waste (Onggok) to Bioethanol Using a Saccharification and Fermentation process Soeprijanto Soeprijanto; Lailatul Qomariyah; Afan Hamzah; Saidah Altway
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.41332

Abstract

Cassava solid waste (Onggok) is a by-product of the starch industry containing a lot of fiber, especially cellulose and hemicellulose. It has the potential to be converted to bioethanol. This work aimed to evaluate the effect of feedstocks ratio for the optimal bioethanol production via enzymatic and acidic hydrolysis process in a batch fermentation process. The effect of alpha-amylase and glucoamylase activities was studied. The sulfuric acid concentrations in the hydrolysis process in converting cassava into reducing sugar were also investigated. The reducing sugar was then fermented to produce ethanol. Enzymatic and chemical hydrolysis was carried out with the ratio of onggok(g)/water(L), 50/1, 75/1, and 100/1 (w/v). In the enzymatic hydrolysis, 22.5, 45, and 67.5 KNU (Kilo Novo alpha-amylase Unit) for liquefaction; and 65, 130, and 195 GAU (Glucoamylase Unit) for saccharification, respectively of enzymes were applied. The liquefaction was carried out at 90-100⁰C for 2 hours. The saccharification was executed at 65 ⁰C for 4 hours. Meanwhile, the acidic hydrolysis operating condition was at 90-100 ⁰C for 3 hours. The fermentation was performed at pH 4.5 for 3 days. Fourier Transform Infra-Red (FTIR) analysis was conducted to evaluate the hydrolysis process. The highest ethanol was yielded in the fermentation at 8.89% with the ratio of onggok to water 100:1, 67.5 KNU of alpha-amylase, and 195 GAU of glucoamylase. Ethanol was further purified utilizing fractional distillation. The final ethanol concentration was at 93-94%.
Consistent Regime-Switching Lasso Model of the Biomass Proximate Analysis Higher Heating Value Akara Kijkarncharoensin; Supachate Innet
International Journal of Renewable Energy Development Vol 12, No 1 (2023): January 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.47831

Abstract

Prediction accuracy is crucial for higher heating value (HHV) models to promote renewable biomass energy, especially its consistency is crucial when retraining data and knowledge of the range are unavailable. Current HHV models lack consistency in accuracy and interpretability due to various reasons. Thus, this study aimed to construct an interpretable and consistent proximate-based biomass HHV model on a wide-range dataset. The model, regime-lasso, integrated the concepts of regime-switching, lasso regression, and federated averaging to construct a consistent HHV model. The regime-switching partitioned the dataset into optimal regimes, and the lasso trained the regime models. The regime-lasso model is a collection of these models. It provided root  mean square error of 0.4430– 0.9050, mean absolute error of 0.2743–0.6867, and average absolute error of 1.512–4.5894% in the literature’s wide-range datasets. The Kruskal–Wallis test confirmed the in-sample performance consistency at α=0.05, regardless of the training sets. In the out-of-sample situations without retraining, the model preserved its accuracy in six out of 11 datasets at α = 0.01. The interpretability of regime-lasso indicated the regime characteristic to be a factor of inconsistent prediction. The increase in FC had the maximum positive impact on HHV in the 2nd and 3rd regimes, while the increase in ASH negatively impacted the 1st and 2nd regimes. VM variation had neutral effects in all regimes. The regime-lasso solves the issues of accuracy declination and addresses the challenges in sensitivity analysis of the HHV model. The prediction accuracy issues of the model’s direct implementation were fixed.
Enhancing the performance of water-based PVT collectors with nano-PCM and twisted absorber tubes Anwer B. Al-Aasama; Adnan Ibrahim; Ubaidah Syafiq; Kamaruzzaman Sopian; Bassam M. Abdulsahib; Mojtaba Dayer
International Journal of Renewable Energy Development Vol 12, No 5 (2023): September 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.54345

Abstract

The study investigated the thermal performance of a photovoltaic thermal (PVT) collector with a twisted absorber tube and nanoparticle-enhanced phase change material (nano-PCM). The PVT collector consisted of twisted absorber tubes, a container filled with nano-PCM, and a photovoltaic (PV) panel. To assess its efficiency, five different configurations were tested using an indoor solar simulator. The configurations analyzed were as follows: (a) an unenhanced PV panel, (b) PVT with circular absorber tubes (C-PVT), (c) PVT with twisted absorber tubes (T-PVT), (d) C-PVT with nano-PCM (C-PVT-PCM), and (e) T-PVT with nano-PCM (T-PVT-PCM). The thermal, photovoltaic, and combined photovoltaic-thermal efficiencies were evaluated at varying mass flow rates (0.008-0.04kg/s) and a constant solar irradiance of 800W/m2. Among the configurations tested, the T-PVT-PCM configuration demonstrated the highest performance. Specifically, at a mass flow rate of 0.04kg/s, solar irradiance of 800W/m2, and an ambient temperature of 27°C, it achieved photovoltaic, thermal, and combined photovoltaic-thermal efficiencies of 9.46%, 79.40%, and 88.86%, respectively. The utilization of twisted absorber tubes in the design notably improved thermal efficiency by enhancing heat transmission between the liquid and the tube surface. Furthermore, the implementation of T-PVT-PCM led to a significant reduction in surface temperature. Compared to the unenhanced PV panel, it lowered the surface temperature by approximately 30°C, and when compared to C-PVT-PCM, it reduced it by around 10°C. Notably, T-PVT-PCM outperformed the unenhanced PV panel by exhibiting a 34.5% higher photovoltaic efficiency. Overall, the study highlights the performance of the PVT collector with twisted absorber tubes and nanoparticle-enhanced phase change material. The innovative design achieved remarkable thermal efficiency, reduced surface temperatures, and significantly enhanced photovoltaic efficiency compared to traditional configurations. These findings contribute to the development of more efficient and versatile solar energy systems with the potential for broader applications in renewable energy technology.

Filter by Year

2012 2026


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue