cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 709 Documents
Energy Efficiency of a Vernacular Building Design and Materials in Hot Arid Climate: Experimental and Numerical Approach Karima El Azhary; Mohamed Ouakarrouch; Najma Laaroussi; Mohammed Garoum
International Journal of Renewable Energy Development Vol 10, No 3 (2021): August 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.35310

Abstract

Morocco faces tremendous climate constraints; the climate is hot and dry in most parts of the country, and when selecting an energy-saving approach, the architectural landscape becomes essential.Designer and building professionals seem to have neglected this large-scale integration. Sustainable development programs in terms of sustainable architecture are ongoing in countries around the world. One part of this trend is the growing concern shown in the high environmental efficiency of vernacular architecture. It is within this prescriptive framework that this research study is being conducted, which reveals novel architectural style integrating thermal comfort, energy efficient characteristics, passive solar elements architecture, and construction techniques inspired from the vernacular Ksourian architectural configurations. The goal of the present research study is to identify features of energy efficient vernacular architecture and thermal performances that affect indoor thermal comfort conditions for adaptation to current lifestyles in modern architecture. The key characteristics developed are; built mass structure, building orientation, space planning, availability of sunspace, building techniques, and new coating materials for manufacturing and roofing. The suggested methodology enables to analyze the thermal performance analysis, applying an experimental research using experimental testing measurement and comparative optimization processes for thermal efficiency and comfort evaluation of a traditional vernacular earthen house.Series of experimental thermophysical characterization measurements have been carried out in order to quantify on a real scale the thermophysical properties that characterize the Rissani earth. Thusthermophysical characterization results are operated as input data for the thermal dynamic simulation for the purpose to evaluate thermal performances and comfort under the weather conditions and control natural comfort in both summer and winter, without using heating or cooling systems. Ultimately, the simulations carried out make it possible to identify the optimal orientation, revealing an effective decrease in interior temperatures during summer and providing good thermal comfort in winter.
Preliminary Investigation on Generation of Electricity Using Micro Wind Turbines Placed on A Car Yogendra Chaudhary; Vijaya Bangi; Ramesh Guduru; Kendrick Aung; Ganesh Reddy
International Journal of Renewable Energy Development Vol 6, No 1 (2017): February 2017
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.6.1.75-81

Abstract

Wind energy is one of the prominent resources for renewable energy and it is traditionally extracted using stationary wind turbines. However, it can also be extracted using mini or micro wind turbines on a moving body, such as an automobile, while cruising at high speeds on freeways. If the electricity is produced using air flowing around the vehicle without affecting aerodynamic performance of the vehicle, it can be used to charge up the battery or power up additional accessories of the vehicle. For the first time, in the present work, a preliminary investigation was carried out to generate electricity by utilizing air flow on a moving car. Initially, a correlation between the car speed and wind velocity was established using an anemometer. Placing a set of two micro wind turbines along with two micro generators on the rear end of the car trunk, the present study investigated the feasibility of generating electricity from these micro wind turbines while evaluating the effect of drag force on the performance of the car through the experimental approach and computational fluid dynamics (CFD) simulations. Both approaches confirmed negligible effect of drag force on the vehicle performance in terms of gas mileage and changes in drag coefficient values. Following these studies, the micro wind turbines were also tested for electricity generation at various cruising speeds of the car ranging from 50 to 80 mph on the freeways. The voltage and power generated always showed an increasing trend with increasing the car speed, however they saturated when a cut off limit was setup with the voltage controllers. A maximum voltage of 3.5 V and a maximum current of 0.8 A were generated by each micro wind turbine when a cut off limit was used along with a load consisting of four LED bulbs in parallel with 3.5 V and 0.2 A rating each. On the other hand, when the tests were repeated without using the cut-off limit, a maximum voltage of 18.91 V and a maximum current of 0.65 A were recorded with a load of six flash bulbs in series (flash bulb rating – 4.8 V and 0.5 A each). These studies clearly demonstrate the flexibility to vary the voltage and current outputs from the micro wind turbines indicating a possibility for utilizing the wind energy on the cars at high speeds.Article History: Received Sept 5th 2016; Received in revised form Dec 6th 2016 ; Accepted January 4th 2017; Available onlineHow to Cite This Article: Bangi, V.K.T., Chaudhary, Y., Guduru, R.K., Aung, K.T and Reddy, G.N. (2017) Preliminary investigation on generation of electricity using micro wind turbines placed on a car. Int. Journal of Renewable Energy Development, 6(1), 75-81.http://dx.doi.org/10.14710/ijred.6.1.75-81
On the Eddy Current Losses in Metallic Towers Ibrahim Mahariq; Svetlana Beryozkina; Huda Mohammed; Hamza Kurt
International Journal of Renewable Energy Development Vol 9, No 1 (2020): February 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.1.1-6

Abstract

The existence of magnetic field around high-voltage overhead transmission lines or low-voltage distribution lines is a known fact and well-studied in the literature. However, the interaction of this magnetic field either with transmission or distribution towers has not been investigated. Noteworthy it is to remember that this field is time-varying with a frequency of 50 Hz or 60 Hz depending on the country. In this paper, we studied for the first time the eddy currents in towers which are made of metals. As the geometrical structures of towers are extremely complex to model, we provide a simple approach based on principles of electromagnetism in order to verify the existence of power loss in the form of eddy currents. The frequency-domain finite difference method is adapted in the current study for simulating the proposed model. The importance of such a study is the addition of a new type of power loss to the power network due to the fact that some towers are made of relatively conductive materials.©2020. CBIORE-IJRED. All rights reserved
Characterization of plant growth promoting potential of 3D-printed plant microbial fuel cells Diane Pamela Entienza Palmero; Kristopher Ray Simbulan Pamintuan
International Journal of Renewable Energy Development Vol 12, No 5 (2023): September 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.52291

Abstract

Plant-Microbial Fuel Cell (PMFC) is an emerging technology that converts plant waste into electrical energy through rhizodeposition, offering a renewable and sustainable source of energy. Deviating from the traditional PMFC configurations, additive manufacturing was utilized to create intricate and efficient designs using polymer-carbon composites. Concerning the agricultural sector, the effect of 3D-printed PMFCs on the growth and biomass distribution of Phaseolus lunatus and Ipomoea aquatica was determined. The experiment showed that electrostimulation promoted the average daily leaf number and plant height of both polarized plants, which were statistically proven to be greater than the control (α = 0.05), by energizing the flow of ions in the soil, boosting nutrient uptake and metabolism. It also stimulated the growth of roots, increasing the root dry mass of polarized plants by 155.44% and 66.30% for I. aquatica and P. Lunatus against their non-polarized counterpart. Due to the biofilm formation on the anode surface, the number of root nodules of the polarized P. lunatus was 51.30% higher than the control, while the protein content in the PMFC setup was 42.22% and 8.26% higher than the control for I. aquatica and P. lunatus, respectively. The voltage readings resemble the plants' average growth rate, and the polarization studies showed that the optimum external resistances in the I. aquatica- and P. lunatus-powered PMFC were 4.7 kΩ and 10 kΩ, respectively. Due to other prevailing pathways of organic carbon consumption, such as methanogenesis, the effect of polarization on the organic carbon content in soil is currently inconclusive and requires further study.
Woodfuel in Rwanda: Impact on Energy, Poverty, Environment and Policy Instruments analysis Ernest Mazimpaka
International Journal of Renewable Energy Development Vol 3, No 1 (2014): February 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.1.21-32

Abstract

Rwanda’s geographical and socio-economic situations have shaped the energy situation and limited access to modern fuels. Woodfuel is the main source of energy for households and its trade a source of income and jobs in rural areas. Currently 85.2% of households’ land holding is less than 1 ha, insufficient to grow food and fuelwood for a household of the average size of 5.5 persons. Without well documented reports of the individual impact of each deforestation factor, woodfuels have been most blamed. This paper investigates how the current woodfuel industry impacts on energy, poverty and forests and analyses the woodfuel policy instruments. Considering woodfuel consumption under an only environmental or energy perspective has resulted in a search for a narrowly environmental or energy solution. Both failed to solve the problem of forest depletion. Current regulations limit the benefits traditionally derived from woodfuel commoditisation leading to a negative attitude towards policy instruments. The processes involved in producing charcoal and using it as a cooking fuel is inefficient and resource intensive. The barriers to large dissemination of improved cooking stoves include availability, relatively low cost of woodfuels, lack of improved stove diversity on the local market and weak government policy in regard to the woodfuel industry. Policies aiming to substitute or reduce woodfuel consumption, have not achieved the desired results and their implementations have not unarguably reduced deforestation. The paper recommends the community-based woodfuel production as sustainable management approaches to mobilise community support for sustainable forestry management and woodfuel production.
The Delignification of Plants Residue Substrate and Accelerated Fungal Consortium Growth-Saccharification: A Practical Approach Ahmad Syauqi; Siti Fatimah; Durrotul Choiroh
International Journal of Renewable Energy Development Vol 11, No 1 (2022): February 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.37768

Abstract

The environments have created an abundance of residual plants from all life sectors, which is not optimal for bioethanol. Therefore, this research developed microbial technology that yielded sugar and fermentation testing. The research aimed to discover the delignification process and compare the consuming sugar by Saccharomyces cerevisiae between the chemical saccharification and accelerated bio-agent of fungal consortium in the engineered media. The innovation of the bioethanol process was conducted using raw materials from biomass. Based on this study, some preliminary hypotheses were made: (i) arranging fungal substrate which consists of residual sugar, molasses, and enriched residual papaya fruits could provide distinguishable growth of cell mass; (ii) the substrate concentration of 2.5% and 7.5% in the growth medium using enriched residual papaya fruits, respectively, as a medium, could be distinguished using delignification. A benchmark was used to compare the chemical and bio-agent saccharification. The consortium that grew and produced cell mass by times factor in molasses has fulfilled the element needed compared to the natural organic substances from the papaya fruit. The higher concentration of delignification material substrate yielded higher growth-saccharification and the average of 10.45 ± 0.21 % Brix was obtained by the fungal consortium in the broth medium, although the acceleration growth is insignificant. Nonetheless, Saccharomyces cerevisiae had successfully fermented saccharification yield sugar from the delignification of plants residual
Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor Bong Guen Hong
International Journal of Renewable Energy Development Vol 7, No 1 (2018): February 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.1.65-70

Abstract

A configuration of a fusion-driven transmutation reactor with a low aspect ratio tokamak-type neutron source was determined in a self-consistent manner by using coupled analysis of tokamak systems and neutron transport. We investigated the impact of blanket configuration on the characteristics of a fusion-driven transmutation reactor. It was shown that by merging the TRU burning blanket and tritium breeding blanket, which uses PbLi as the tritium breeding material and as coolant, effective transmutation is possible. The TRU transmutation capability can be improved with a reduced blanket thickness, and fast fluence at the first wall can be reduced. Article History: Received: July 10th 2017; Received: Dec 17th 2017; Accepted: February 2nd 2018; Available onlineHow to Cite This Article: Hong, B.G. (2018) Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor. International Journal of Renewable Energy Development, 7(1), 65-70.https://doi.org/10.14710/ijred.7.1.65-70
Socio-Economic Prospects of Solar PV Uptake in Energy Policy Landscape of Pakistan Faraz ul Haq; Tanzeel ur Rashid; Ubaid ur Rehman Zia
International Journal of Renewable Energy Development Vol 11, No 4 (2022): November 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.46082

Abstract

Despite global calls for climate change and its impacts in past decade, energy sector of Pakistan has remained highly dominated by high-cost carbon-intensive resources. Although a significant number of policies have been put forward by both provincial and federal government in last three years, the ground-level implementation of these policies is non-existent, and Pakistan’s progress is still far behind the developed countries. This study therefore performs a socio-economic analysis of solar PV potential in Pakistan and how recent policies can be mobilized to upscale the utilization of solar PV both as an on-grid and off-grid generation source. This also links to solar potential for corporate sector engagements in their Net-Zero Pathways. The methodological approach uses a Low Emission Analysis Platform (LEAP) model designed for Pakistan’s Power System supplies under three different scenarios i.e., Energy Transition Scenario, Conventional Generation Scenarios, and Business as Usual Scenario. Indicative Generation Capacity Expansion Plan (IGCEP 2021) along with recent policies is used as the leading data source for driving the capacity additions. The results obtained from the model indicates that despite having a large potential, under currently policies the share of solar in total grid power generation will remain under 2% by 2030. Under Energy Transition Scenario, the model runs under a least cost optimization plan leading to a higher uptake of solar power. As per this scenario, the share of renewable increase beyond 2030 to achieve a share of around 50% by 2045. This can lead to cumulative carbon reductions of around 2000 Mt by 2030 and economic savings of around $ 5 billion. Based on the model results, this study also identifies the possible pathways for upcoming iterations of Pakistan IGCEP plan that builds around solar PV
Potential of Wind Energy in Albania and Kosovo: Equity Payback and GHG Reduction of Wind Turbine Installation Mevlan Qafleshi; Driton R. Kryeziu; Lulezime Aliko
International Journal of Renewable Energy Development Vol 4, No 1 (2015): February 2015
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.4.1.11-19

Abstract

The energy generation in Albania is completely from the hydropower plants. In terms of GHG emissions this is 100% green. In Kosovo 97% of energy is generated from lignite fired power plants. Apart the energy generation, the combustion process emits around 8000 ktCO2/yr and 1.5 Mt of ash in the form of fly and bottom ash. In both countries there is no MWh power generated from wind energy, i.e. this energy source is not utilized. Here, a proposed project for five locations in Albania and Kosovo has been analyzed in detail with the aim of installing a 1kW wind turbine off-grid. The method of study is based on the application of RETScreen International program software. This proposed model is intended to replace a base case- a diesel generator with installed capacity 7kW.  The locations are selected three in Albania: Vlora, Korça and Elbasan, and two in Kosovo: Prishtina and Prizren. All are in different altitudes. By the calculation of RETScreen program, it has been analyzed the feasibility of the proposed projects by installing a wind turbine at hub’s height 20m. The climate data for each location were retrieved by the RETScreen program from NASA. Generally, the calculation of financial parameters for the investments came out to be positive, the impact of GHG reduction very significant. A 5500 USD investment for the implementation of proposed case showed an equity payback time of 2-3 yrs and GHG reduction of 2.2 tCO2/yr. The electricity delivery to load only from this 1 KW wind turbine resulted to be between 1.6-17 MWh/yr.
Thermogravimetric Analysis and Kinetic Study on Catalytic Pyrolysis of Rice Husk Pellet using Its Ash as a Low-cost In-situ Catalyst Wusana Agung Wibowo; Rochim Bakti Cahyono; Rochmadi Rochmadi; Arief Budiman
International Journal of Renewable Energy Development Vol 11, No 1 (2022): February 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.41887

Abstract

The thermogravimetric behaviors and the kinetic parameters of uncatalyzed and catalyzed pyrolysis processes of a mixture of powdered raw rice husk (RRH) and its ash (RHA) in the form of pellets were determined by thermogravimetric analysis at three different heating rates, i.e., 5, 10, and 20 K/min, from 303 to 873 K. This research aimed to prove that the rice husk ash has a catalytic effect on rice husk pyrolysis. To investigate the catalytic effect of RHA, rice husk pellets (RHP) with the weight ratio of RRH:ARH of 10:2 were used as the sample. Model-free methods, namely Friedman (FR), Kissinger-Akahira-Sunose (KAS), and Flynn-Wall-Ozawa (FWO), were used to calculate the apparent energy of activation(EA). The thermogravimetric analysis showed that the decomposition of RHP in a nitrogen atmosphere could be divided into three stages: drying stage (303-443 K), the rapid decomposition stage (443-703 K), and the slow decomposition stage (703-873 K). The weight loss percentages of each stage for both uncatalyzed and catalyzed pyrolysis of RHP were 2.4-5.7%, 35.5-59.4%, and 2.9-12.2%, respectively. Using the FR, FWO, and KAS methods, the values of  for the degrees of conversion (a) of 0.1 to 0.65 were in the range of 168-256 kJ/mol for the uncatalyzed pyrolysis and 97-204 kJ/mol for the catalyzed one. We found that the catalyzed pyrolysis led the  to have values lower than those got by the uncatalyzed one. This phenomenon might prove that RHA has a catalytic effect on RHP pyrolysis by lowering the energy of activation.

Filter by Year

2012 2026


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue