cover
Contact Name
Rudolf Sinaga
Contact Email
lppm@stikes-garudaputih.ac.id
Phone
+6285268889547
Journal Mail Official
lppm@stikes-garudaputih.ac
Editorial Address
Jln. Raden Mattaher No.35 Kel. Sulanjana, Kota Jambi
Location
Kota jambi,
Jambi
INDONESIA
ARUMAS
ISSN : -     EISSN : 30469481     DOI : -
Jurnal Administrasi Rumah Sakit (ARUMAS) adalah jurnal nasional memiliki fokus di bidang informatika kesehatan, administrasi layanan dan manajemen rumah sakit dan pelayanan kesehatan primer. Adapun artikel atau naskah ilmiah yang dimuat dalam Jurnal ARUMAS mencakup ranah penelitian, studi kasus, atau konseptual yang masing-masing mengusung pilar corporate governance, clinical governance, atau keduanya. ARUMAS terbit dua kali dalam satu tahun (enam bulan sekali), yaitu Februari dan Agustus.
Articles 3 Documents
Search results for , issue "Vol 2 No 1 (2025): Jurnal Administrasi Rumah Sakit" : 3 Documents clear
EVALUASI IMPLEMENTASI ELECTRONIC HEALTH RECORDS (EHR) RS Dr. BRATANATA JAMBI Listautin, Listautin; Nengsi, Novida; Irwandi, Irwandi
ARUMAS Vol 2 No 1 (2025): Jurnal Administrasi Rumah Sakit
Publisher : STIKES Garuda Putih

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52741/ars.v2i1.72

Abstract

Latar Belakang: Rumah sakit memiliki peran utama memberikan pelayanan kesehatan berkualitas. Electronic Health Records (EHR) menjadi solusi modern untuk mengelola informasi medis secara terintegrasi, meningkatkan efisiensi administrasi, mempercepat proses perawatan, dan mendukung pengambilan keputusan medis. Tujuan: Penelitian ini bertujuan untuk mengevaluasi faktor keberhasilan EHR, manfaat sistem, hambatan implementasi, dan kerahasiaan di RS dr. Bratanata. Metode: Penelitian ini merupakan penelitian kualitatif dengan pendekatan studi kasus untuk mengeksplorasi pengalaman pengguna EHR di RS dr. Bratanata. Sampel berjumlah 8 Partisipan melalui wawancara semi terstruktur menggunakan pedoman wawancara. Analisis data menggunakan metode fenomenologi dengan Empat tema wawancara yaitu faktor keberhasilan, manfaat penggunaan HER, hambatan implementasi, kerahasiaan atau keamanan. Penelitian di laksanakan pada bulan Agustus 2024. Hasil: Faktor keberhasilan: Fasilitas pendukung seperti komputer, server dan jaringan internet memadai meski terkadang ada kendala koneksi. SDM muda lebih mudah beradaptasi dengan teknologi namun senior cenderung resistensi. EHR mempercepat akses data dibanding sistem manual. Kesalahan input data masih menjadi tantangan. Tema 2. Hambatan: Pelatihan belum optimal, terutama terutama bagi staf berpendidikan rendah. Tidak ada SOP untuk mengatasi kesalahan input data. EHR lebih aman dibandingkan sistem berbasis kertas karena dilengkapi teknologi enkripsi, kontrol akses, dan pencadangan data. Tema 3. Kerahasiaan: data terjaga lebih baik dengan mekanisme keamanan digital. Tema 4. Manfaat: EHR meningkatkan efisiensi pengelolaan data pasien, mengurangi risiko kehilangan dokumen fisik, dan mempercepat pengambilan keputusan medis, meski digitalisasi belum sepenuhnya tercapai. Kesimpulan: Implementasi EHR di RS dr. Bratanata meningkatkan efisiensi, keamanan data, dan akses informasi. Namun, hambatan berupa pelatihan belum memadai, ketiadaan SOP, dan resistensi pengguna senior perlu diatasi untuk mengoptimalkan sistem.
Analisis Faktor Yang Mempengaruhi Minat Berkunjung Ulang Pasien Rawat Jalan Di Rumah Sakit Islam Sultan Agung Banjarbaru anggi nooropie maharani; Rahman, Andri Nur; Hastuti, Eny
ARUMAS Vol 2 No 1 (2025): Jurnal Administrasi Rumah Sakit
Publisher : STIKES Garuda Putih

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52741/ars.v2i1.48

Abstract

The interest in repeat visits is an illustration of a hospital's success in creating a quality hospital in terms of its services. Patients returning to the same health service means that the reality they receive is higher than what they expected, resulting in patient loyalty to the hospital. This research aims to find out what factors influence the interest in revisiting outpatients at RSI Sultan Agung Banjarbaru. This research uses a cross-sectional approach with causal quantitative methods. The population and sample in this study were outpatients at RSI Sultan Agung with a sample of 105 people, with the research instrument using a questionnaire. Data analysis uses univariate and bivariate analysis methods. The results showed that there was an influence of patient attitude variables (p=0.001, r=0.622), brand image (p=0.001, r=0.812), perceived value (p=0.001, r=0.700), perceived quality (p=0.001, r=0.565) on interest in revisiting. The conclusion of this research is that the variables of patient attitude, brand image, perceived value and perceived quality influence the interest in revisiting outpatients at RSI Sultan Agung Banjarbaru. Keywords: Patient Attitude, Brand Image, Perceived Value, Perceived Quality, Intention to Revisit
Data Mining untuk Evaluasi Kualitas Layanan Persalinan: Studi Komparatif RapidMiner dan SPSS Irwandi, Irwandi; Samsinar, Samsinar; Sinaga, Rudolf
ARUMAS Vol 2 No 1 (2025): Jurnal Administrasi Rumah Sakit
Publisher : STIKES Garuda Putih

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52741/ars.v2i1.102

Abstract

Improving the quality of maternity services is a strategic priority in the health system. With the development of technology, data mining has become an effective approach to evaluate the quality of big data-based services. This study aims to compare the performance of two data mining tools—RapidMiner and SPSS—in analyzing labor service data to assess the effectiveness, efficiency, and ease of interpretation of the analysis results. A quantitative approach was used as a method with a comparative design of 500 childbirth data from hospitals. Data were analyzed using RapidMiner with Decision Tree and K-Means algorithms, as well as SPSS with logistic regression and correlation tests. The indicators assessed include prediction accuracy, processing time, and ease of use. The results of the analysis showed that RapidMiner achieved a prediction accuracy of 85.4% and was able to cluster with a silhouette coefficient of 0.65. The processing time is about 12 minutes. SPSS shows an accuracy of 81.2% with a faster processing time of 8 minutes. Significant factors found include the mother's age, complications, and type of delivery. RapidMiner excels in predictive analysis and big data processing, while SPSS is more efficient for conventional statistical analysis. A combination of the two is recommended to obtain more comprehensive service evaluation results. The integration of data mining in health information systems needs to be strengthened to support data-based policies in improving the quality of maternity services.

Page 1 of 1 | Total Record : 3