Mechatronics, Electrical Power, and Vehicular Technology
Mechatronics, Electrical Power, and Vehicular Technology (hence MEV) is a journal aims to be a leading peer-reviewed platform and an authoritative source of information. We publish original research papers, review articles and case studies focused on mechatronics, electrical power, and vehicular technology as well as related topics. All papers are peer-reviewed by at least two referees. MEV is published and imprinted by Research Center for Electrical Power and Mechatronics - Indonesian Institute of Sciences and managed to be issued twice in every volume. For every edition, the online edition is published earlier than the print edition.
Articles
596 Documents
Distributed Control System Design for Portable PC Based CNC Machine
Saputra, Roni Permana;
Atmaja, Tinton Dwi;
Prawara, Budi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 5, No 1 (2014)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (2942.697 KB)
|
DOI: 10.14203/j.mev.2014.v5.37-44
The demand on automated machining has been increased and emerges improvement research to achieve many goals such as portability, low cost manufacturability, interoperability, and simplicity in machine usage. These improvements are conducted without ignoring the performance analysis and usability evaluation. This research has designed a distributed control system in purpose to control a portable CNC machine. The design consists of main processing unit, secondary processing unit, motor control, and motor driver. A preliminary simulation has been conducted for performance analysis including linear accuracy and circular accuracy. The results achieved in the simulation provide linear accuracy up to 2 μm with total cost for the whole processing unit is up to 5 million IDR.
Design and Implementation of Controller for Boost DC-DC Converter Using PI-LPF Based on Small Signal Model
Kasbi, Slamet;
Rijanto, Estiko;
Abd Ghani, Rasli bin
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 6, No 2 (2015)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (636.098 KB)
|
DOI: 10.14203/j.mev.2015.v6.105-112
Boost DC-DC converters are used in many renewable energy sources including photovoltaic and fuel cell. They are also used in Uninterrupted Power Supply, inverters, electric vehicles and robots. In this paper a boost converter was built and its controller was developed using proportional integral (PI) action for current loop and low pass filter (LPF) for voltage loop. The controller was derived analytically based on small signal model. Experiment results show that the boost controller functions well in regulating the output voltage under a variation of load. During the start up without any load it can elevate input voltage from 119.6V to output voltage of 241.6V. The developed controller can regulate the output voltage smoothly under load variation from no load to sudden load of 352W. When a large sudden load change happens from 0W to 1042W the output voltage experiences small drop before it is recovered to 241.6V. It can be concluded that the developed control system satisfies the design specification.
Front Cover MEV Vol 1 No 2
Atmaja, Tinton Dwi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 1, No 2 (2010)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.14203/j.mev.2010.v1.%p
Simple supercapacitor charging scheme of an electric vehicle on small-scale hardware simulator: a prototype development for education purpose
Al Tahtawi, Adnan Rafi;
Rohman, Arief Syaichu
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 7, No 2 (2016)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (225.7 KB)
|
DOI: 10.14203/j.mev.2016.v7.77-86
Supercapacitor is one of electrical energy sources that have faster charging-discharging times when compared to other power sources, such as battery and fuel cell. Therefore, it is often used as an additional power source in an electric vehicle. In this paper, a prototype of small-scale electric vehicle simulator (EVS) is built and a simple charging scheme of supercapacitor is used for education purpose. EVS is an electric vehicle prototype which can show the vehicle’s powertrain on small-scale configuration. Main components of this device are two direct current motors (DCMs) with a linked axis of rotation. Therefore one of them will be able to act as a generator. The supercapacitor charging scheme is employed by controlling the relays. The hardware experimental result shows that the averages of charging current are proportional to the maximum slope angle of the road profiles. This scheme is simple due to the EVS utility and it is useful for education purpose.
Design of a DC-AC Link Converter for 500W Residential Wind Generator
Muhida, Riza;
Zaidi, Ahmad Firdaus A.;
Tamsir, Afzeri;
Irawan, Rudi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 2 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (441.737 KB)
|
DOI: 10.14203/j.mev.2012.v3.95-102
 As one of alternative sources of renewable energy, wind energy has an excellence prospect in Indonesia, particularly in coastal and hilly areas which have potential wind to generate electricity for residential uses. There is urgent need to locally develop low cost inverter of wind generator system for residential use. Recent developments in power electronic converters and embedded computing allow improvement of power electronic converter devices that enable integration of microcontrollers in its design. In this project, an inverter circuit with suitable control scheme design was developed. The circuit was to be used with a selected topology of Wind Energy Conversion System (WECS) to convert electricity generated by a 500W direct-drive permanent magnet type wind generator which is typical for residential use. From single phase AC output of the generator, a rectifier circuit is designed to convert AC to DC voltage. Then a DC-DC boost converter is used to step up the voltage to a nominal DC voltage suitable for domestic use. The proposed inverter then will convert the DC voltage to sinusoidal AC. The duty cycle of sinusoidal Pulse-Width Modulated (SPWM) signal controlling switches in the inverter was generated by a microcontroller. The lab-scale experimental rig involves simulation of wind generator by running a geared DC motor coupled with 500W wind generator where the prototype circuit was connected at the generator output. The experimental circuit produced single phase 240V sinusoidal AC voltage with frequency of 50Hz. Measured total harmonics distortion (THD) of the voltage across load was 4.0% which is within the limit of 5% as recommended by IEEE Standard 519-1992.
Pendulum energy harvester with amplifier
Černý, Michal;
Dzurilla, Michal;
Musil, Miloš;
GaÅ¡parÃk, Marek
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 9, No 1 (2018)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (334.882 KB)
|
DOI: 10.14203/j.mev.2018.v9.25-31
This paper presents a new principle of inductive vibration power harvester. Harvester is a pendulum that uses energy capacitor which is the mass. The mass is connected to the pendulum via a gearbox to achieve greater movement of the pendulum that generates an electromagnetic voltage. The harvester is developed at a very low frequency (1-10 Hz) which uses the rectified magnetic fluxes. Magnets are statically placed in the harvester case, and relative motion is carried out by the coil. Magnets are static, and the coil moves due to the weight ratio of magnets which the steel leads of the magnetic flux and the coil itself. This paper is focused on a harvester with a mechanical amplifier with the proposed technique is brings the plow harvester access with an auxiliary force. The experimental results indicate that the optimal results of the harvester with an accumulator for the resonant zone are 3.75 Hz, 7 Hz, and 10 Hz.
Front Cover MEV Vol 4 Iss 2
Muharam, Aam
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 4, No 2 (2013)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.14203/j.mev.2013.v4.%p
A Modified Gain Schedulling Controller by Considering the Sparseness Property of UAV Quadrotors
Abdurrohman, M Qodar;
Inovan, Reka;
Ataka, Ahmad;
Tnunay, Hilton;
Wimbo, Ardhimas;
Iswanto, Iswanto;
Cahyadi, Adha;
Yamamoto, Yoshio
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 6, No 1 (2015)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (3347.433 KB)
|
DOI: 10.14203/j.mev.2015.v6.9-18
This work presented the gain scheduling based LQR for Quadrotor systems. From the original nonlinear model, the system is always controllable and observable in various equilibrium points. Moreover, the linearized systems have a unique property that is known as sparse system. Hence, in order to implement the most efficient state feedback controller, post-filter and pre-filter were introduced to transform the state coordinate to decrease coupling between states. Finally, the gain scheduling systems using these facts was proposed. The system behavior was tested using the proposed controller. The numerical studies showed the effectiveness of the controller to achieve desired altitude, attitude, and its ability during the disturbance
Study of Biogas for Power Generation at Pesantren Saung Balong Al-Barokah, Majalengka, West Java
Arifin, Maulana;
Saepudin, Aep;
Santoso, Arifin
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 2, No 2 (2011)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (309.624 KB)
|
DOI: 10.14203/j.mev.2011.v2.73-78
Utilization of biogas from cow manure as a fuel alternative for power plants is done through an anaerobic process. A pilot plant with biogas production of 7 m3/day has been installed at Pesantren Saung Balong. Biogas is used for everyday purposes such as cooking and lighting, and used as pure biogas with 2.500 Watt scale generator. Biogas produced with the rate of 0.080 m3/hr. Biogas produced during the measurement (450 minutes) is 0.604 m3. With these data it is predicted that within a day (24 hours) biogas which can be generated is equal to 1.92 m3. Meanwhile, consumption of biogas to the generator with 1.047 W load is 0.019 m3/minutes, the generator will operate for approximately 101.05 minutes or 1.68 hours. Thus electricity that can be saved is 1.759 kWh per day or 52.77 kWh per month and electricity cost that can be saved that is equal to Rp.40.896/month.Â
Analysis of Inverse Angle Method for Controlling Two Degree of Freedom Manipulator
Saputra, Hendri Maja;
Abidin, Zainal;
Rijanto, Estiko
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1184.577 KB)
|
DOI: 10.14203/j.mev.2012.v3.9-16
Driver mechanism with two degree of freedom (MP 2-DK) is a robotic device that can be used for various applications such as turret drive system, gutling gun, launcher, radar antennas, and communications satellite antennas. The precision and the speed of a MP 2-DK are determined by its control system. The calculation inverse angle due to interference in six degree of freedom is necessary to control a MP 2 DK. This paper analyses three calculation methods of inverse angle which are iteration method using Jacobian matrix, reduction of matrix equations using positioning geometry, and an analytical derivation using a rotation matrix. The simulation results of the three methods showed that the first and the third methods could visually demonstrate three rotational disturbances, whereas the second method could only demonstrate the pitch and yaw (PY) disturbances. The third method required less processing time than the first and the second methods. The best method based on this research was the method of rotation matrix.