cover
Contact Name
Mochamad Tito Julianto
Contact Email
mtjulianto@apps.ipb.ac.id
Phone
+6282210017722
Journal Mail Official
milang@apps.ipb.ac.id
Editorial Address
Sekolah Sains Data, Matematika dan Informatika, Jl. Meranti, Kampus IPB Dramaga, Kabupaten Bogor 16680
Location
Kota bogor,
Jawa barat
INDONESIA
MILANG Journal of Mathematics and Its Applications
ISSN : -     EISSN : 29635233     DOI : https://doi.org/10.29244/milang.18.1
Core Subject : Education,
MILANG Journal of Mathematics and Its Applications, originally established in 2002 as the Journal of Mathematics and Its Applications (ISSN 1412-677X), transitioned to online publishing in 2018 and was renamed in 2022 to reflect its broadened scope. The name MILANG, a Sundanese word meaning “to count,” also stands for the journal’s key focus areas: Mathematics in Informatics, Life Sciences, Actuarial Science, Natural Sciences, and Graph Theory. This journal, published twice a year in June and December by the Department of Mathematics, IPB University, embraces an open access policy, making all articles freely available upon publication to support the global dissemination of innovative mathematical research.
Articles 5 Documents
Search results for , issue "Vol. 10 No. 2 (2011): Journal of Mathematics and Its Applications" : 5 Documents clear
ANALISIS RISIKO OPERASIONAL MENGGUNAKAN PENDEKATAN DISTRIBUSI KERUGIAN DENGAN METODE AGREGAT ARBI, Y.; BUDIARTI, R.; PURNABA, I G. P.
MILANG Journal of Mathematics and Its Applications Vol. 10 No. 2 (2011): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.10.2.1-10

Abstract

Operational risk is defined as the risk of loss resulting from inadequate or failed internal processes or external problems. Insurance companies as financial institution that also faced at risk. Recording of operating losses in insurance companies, were not properly conducted so that the impact on the limited data for operational losses. In this work, the data of operational loss observed from the payment of the claim. In general, the number of insurance claims can be modelled using the Poisson distribution, where the expected value of the claims is similar with variance, while the negative binomial distribution, the expected value was bound to be less than the variance.Analysis tools are used in the measurement of the potential loss is the loss distribution approach with the aggregate method. In the aggregate method, loss data grouped in a frequency distribution and severity distribution. After doing 10.000 times simulation are resulted total loss of claim value, which is total from individual claim every simulation. Then from the result was set the value of potential loss (OpVar) at a certain level confidence.
PENYELESAIAN MASALAH DAUR ULANG NUTRISI DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI AIN, N.; JAHARUDDIN, J.; KUSNANTO, A.
MILANG Journal of Mathematics and Its Applications Vol. 10 No. 2 (2011): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.10.2.11-18

Abstract

Masalah daur ulang nutrisi yang ditinjau berupa kolam air tawar yang di dalamnya terdapat tiga komponen, yaitu nutrisi biotik, organisme autotrof, dan organisme detritus. Model matematika diturunkan untuk memperoleh jumlah nutrisi biotik, organisme autotrof, dan organisme detritus.  Model ini diselesaikan dengan metode perturbasi homotopi. Metode perturbasi homotopi merupakan suatu metode pendekatan analitik yang menggabungkan antara metode homotopi dan metode klasik dari perturbasi. Berdasarkan metode ini diperoleh penyelesaian model persamaan bagi masalah daur ulang nutrisi dalam bentuk deret pangkat. Dikaji kasus dimana tingkat pertumbuhan autotrof  lebih besar dari laju kematiannya.
PENJADWALAN KERETA PADA JALUR GANDA SECARA PERIODIK DENGAN BIAYA MINIMUM HIDAYATSYAH, M. R.; HANUM, F.; SUPRIYO, P. T.
MILANG Journal of Mathematics and Its Applications Vol. 10 No. 2 (2011): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.10.2.19-30

Abstract

Kereta merupakan alat transportasi massal yang banyak digunakan oleh masyarakat. Agar  kebutuhan akan alat transportasi tersebut terpenuhi, dibutuhkan penjadwalan yang baik. Model penjadwalan kereta yang akan dibahas dalam  karya ilmiah ini ialah MCSP (minimum cost scheduling problem) yaitu sebuah model penjadwalan kereta yang meminimumkan biaya operasional yang diformulasikan sebagai integer programming. MCSP memiliki dua bagian yaitu MCTP (minimum cost train problem) pada bagian pertama dan masalah penjadwalan pada bagian kedua. Pada bagian pertama, dilakukan pemilihan kereta yang tepat untuk rute tertentu dengan biaya minimum, sedangkan pada bagian kedua dilakukan penjadwalan berdasarkan kereta yang terpilih. Penjadwalan kereta dilakukan hanya untuk satu periode waktu dan secara periodik berlaku pula untuk periode waktu lainnya. Model ini diselesaikan menggunakan LINGO 11.0 dan hasil yang diperoleh berupa jadwal perjalanan kereta yang terpilih pada jalur tertentu dengan biaya operasional minimum.
PENYELESAIAN OPEN VEHICLE ROUTING PROBLEM MENGGUNAKAN METODE HEURISTIK SARIKLIS POWELL INDAKA, A.; SISWANDI, S.; HANUM, F.
MILANG Journal of Mathematics and Its Applications Vol. 10 No. 2 (2011): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.10.2.31-40

Abstract

Masalah rute kendaraan terbuka (open vehicle routing problem) sehingga kendaraan tidak diperlukan untuk kembali ke depot merupakan bagian dari Vehicle Routing Problem (VRP)yang mengharuskan setiap konsumen dikunjungi sekali dan hanya sekali dengan tepat satu kendaraan.Metode heuristik yang digunakan untuk menyelesaikan masalah ini merupakan suatu algoritme yang terdiri dari beberapa fase.Fase pertama ialah fase pembentukan cluster yang seimbang, sedangkan fase kedua ialah fase penentuan rute. Fase kedua dilakukan dengan penentuan minimumspanning tree(MST) dengan algoritme Prim, pemodifikasian MST dengan fungsi penalti, kemudian pengubahan solusi takfisibel menjadi solusi fisibel.
PEMODELAN HIDDEN MARKOV UNTUK TRANSAKSI PELANGGAN MUNAWAR, D. A.; SETIAWATY, B.; ARDANA, N. K. K.
MILANG Journal of Mathematics and Its Applications Vol. 10 No. 2 (2011): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.10.2.41-51

Abstract

Transaksi pelanggan dapat dimodelkan menggunakan Hidden Markov. Pendugaan parameter model dilakukan menggunakan MetodeMaximum Likelihood Rabiner yang terdiri dari: Algoritme Forward, Algoritme Virtebi dan algoritme Baum-Welch. Aplikasi pada data transaksi perusahaan seluler menunjukkan hasil yang memuaskan. 

Page 1 of 1 | Total Record : 5


Filter by Year

2011 2011


Filter By Issues
All Issue Vol. 21 No. 1 (2025): MILANG Journal of Mathematics and Its Applications Vol. 20 No. 2 (2024): MILANG Journal of Mathematics and Its Applications Vol. 20 No. 1 (2024): MILANG Journal of Mathematics and Its Applications Vol. 19 No. 2 (2023): MILANG Journal of Mathematics and Its Applications Vol. 19 No. 1 (2023): MILANG Journal of Mathematics and Its Applications Vol. 18 No. 2 (2022): MILANG Journal of Mathematics and Its Applications Vol. 18 No. 1 (2022): MILANG Journal of Mathematics and Its Applications Vol. 17 No. 2 (2018): Journal of Mathematics and Its Applications Vol. 17 No. 1 (2018): Journal of Mathematics and Its Applications Vol. 16 No. 2 (2017): Journal of Mathematics and Its Applications Vol. 16 No. 1 (2017): Journal of Mathematics and Its Applications Vol. 15 No. 2 (2016): Journal of Mathematics and Its Applications Vol. 15 No. 1 (2016): Journal of Mathematics and Its Applications Vol. 14 No. 2 (2015): Journal of Mathematics and Its Applications Vol. 14 No. 1 (2015): Journal of Mathematics and Its Applications Vol. 13 No. 2 (2014): Journal of Mathematics and Its Applications Vol. 13 No. 1 (2014): Journal of Mathematics and Its Applications Vol. 12 No. 2 (2013): Journal of Mathematics and Its Applications Vol. 12 No. 1 (2013): Journal of Mathematics and Its Applications Vol. 11 No. 2 (2012): Journal of Mathematics and Its Applications Vol. 11 No. 1 (2012): Journal of Mathematics and Its Applications Vol. 10 No. 2 (2011): Journal of Mathematics and Its Applications Vol. 10 No. 1 (2011): Journal of Mathematics and Its Applications Vol. 9 No. 2 (2010): Journal of Mathematics and Its Applications Vol. 9 No. 1 (2010): Journal of Mathematics and Its Applications Vol. 8 No. 2 (2009): Journal of Mathematics and Its Applications Vol. 8 No. 1 (2009): Journal of Mathematics and Its Applications Vol. 7 No. 2 (2008): Journal of Mathematics and Its Applications Vol. 7 No. 1 (2008): Journal of Mathematics and Its Applications Vol. 6 No. 2 (2007): Journal of Mathematics and Its Applications Vol. 6 No. 1 (2007): Journal of Mathematics and Its Applications Vol. 5 No. 2 (2006): Journal of Mathematics and Its Applications Vol. 5 No. 1 (2006): Journal of Mathematics and Its Applications Vol. 4 No. 2 (2005): Journal of Mathematics and Its Applications Vol. 4 No. 1 (2005): Journal of Mathematics and Its Applications Vol. 3 No. 2 (2004): Journal of Mathematics and Its Applications Vol. 3 No. 1 (2004): Journal of Mathematics and Its Applications Vol. 2 No. 2 (2003): Journal of Mathematics and Its Applications Vol. 2 No. 1 (2003): Journal of Mathematics and Its Applications Vol. 1 No. 2 (2002): Journal of Mathematics and Its Applications Vol. 1 No. 1 (2002): Journal of Mathematics and Its Applications More Issue