cover
Contact Name
Rahmad Hidayat
Contact Email
rahmad_hidayat@pnl.ac.id
Phone
+6285277807726
Journal Mail Official
admin.trik@pnl.ac.id
Editorial Address
Jl. Medan - Banda Aceh No.Km. 280 3, RW.Buketrata, Mesjid Punteut, Kec. Blang Mangat, Kota Lhokseumawe, Aceh 24301
Location
Kota lhokseumawe,
Aceh
INDONESIA
Jurnal Teknologi Rekayasa Informasi dan Komputer
ISSN : 25812882     EISSN : 27971724     DOI : http://dx.doi.org/10.30811/jtrik.v8i1
Core Subject : Science,
Jurnal Teknologi Rekayasa Informasi dan Komputer (JTRIK) merupakan media publikasi hasil penelitian yang diterbitkan oleh Politeknik Negeri Lhokseumawe. JTRIK dipublikasikan setiap 2 bulan yaitu maret dan september baik secara print dan online. Scope jurnal ini meliputi bidang ilmu komputer, pemrosesan citra, jaringan komputer, keamanan komputer, multimedia, pengembangan perangkat lunak dan internet of things
Articles 8 Documents
Search results for , issue "Vol 6, No 1 (2023): JURNAL TRIK - POLITEKNIK NEGERI LHOKSEUMAWE" : 8 Documents clear
Implementasi Metode Object Detection Dengan Algoritma You Only Look Once (YOLO) Untuk Deteksi Kecurangan Di Dalam Ruang Ujian Nur, Tajun; Huzaeni, Huzaeni; Khadafi, M.
Jurnal Teknologi Rekayasa Informasi dan Komputer Vol 6, No 1 (2023): JURNAL TRIK - POLITEKNIK NEGERI LHOKSEUMAWE
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jtrik.v6i1.4699

Abstract

Cheating behavior is a dishonest act carried out by someone to get a satisfactory end result. Academic cheating is still often done by students to get high grades. In recent years, research on artificial intelligence such as object detection has been carried out and the results can make it easier for researchers to recognize objects contained in an image. Therefore, in this study, a system will be built that is able to detect the experience of examinees in the room during the exam. Detection is done using a camera installed in the exam room, the camera will take real-time video images that will be used as input. In this study the author uses yahoo You Only Look Once (YOLO) version 4. This study uses a dataset of 1050 images divided into 6 classes, namely: students using cellphones, cellphones, looking left, looking right, looking down, looking back, and students who work together. The results show that the YOLOv4 algorithm can recognize and detect objects in real time using self-trained weights with a Mean Average Precision (mAP) of 86%. Keywords—YOLO, Cheating, Object Detection, Computer Vision, exam, Digital Image
Klasifikasi Citra Batik Aceh Menggunakan Metode KNearest Neighbor (K-NN) Berbasis Androi Fajira, Hilda; Indrawati, Indrawati; Aswandi, Aswandi
Jurnal Teknologi Rekayasa Informasi dan Komputer Vol 6, No 1 (2023): JURNAL TRIK - POLITEKNIK NEGERI LHOKSEUMAWE
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jtrik.v6i1.4700

Abstract

Batik is a pictorial cloth that is specially made by writing or applying wax to the cloth, then processing it in a certain way that has its own characteristics. In Indonesia, there are so many different batik motifs from each region. One of the problems with batik is that batik has very diverse motifs and colors, so it is very difficult to classify batik into certain classes. This study was conducted to classify Acehnese natik into classes or regional origins based on batik motifs and characteristics and understanding of batik. The method used is the K-Nearest Neighbor method which is used to determine the closeness between the test image and the training image based on the motif features of the Aceh batik image obtained. This application system recognizes the type of Aceh batik, which reaches 80% Keywords: K-Nearest Neighbor, K-NN, Batik Aceh
Klasifikasi Citra Batik Aceh Menggunakan Metode K-Nearest Neighbor (K-Nn) Berbasis Android Fajira, Hilda; Indrawati, Indrawati; Aswandi, Aswandi
Jurnal Teknologi Rekayasa Informasi dan Komputer Vol 6, No 1 (2023): JURNAL TRIK - POLITEKNIK NEGERI LHOKSEUMAWE
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jtrik.v6i1.4802

Abstract

Batik is a pictorial cloth that is specially made by writing or applying wax to the cloth, then processing it in a certain way that has its own characteristics. In Indonesia, there are so many different batik motifs from each region. One of the problems with batik is that batik has very diverse motifs and colors, so it is very difficult to classify batik into certain classes. This study was conducted to classify Acehnese natik into classes or regional origins based on batik motifs and characteristics and understanding of batik. The method used is the K-Nearest Neighbor method which is used to determine the closeness between the test image and the training image based on the motif features of the Aceh batik image obtained. This application system recognizes the type of Aceh batik, which reaches 80% Keywords: K-Nearest Neighbor, K-NN, Batik Aceh.
Rancang Bangun Model Name Entity Recognition Menggunakan Metode Backpropagation dalam Klasifikasi Berita Hoaks Seputar Vaksin Covid-19 Khairunnas, Muhammad Fadil; Arhami, Muhammad; Khadafi, M.
Jurnal Teknologi Rekayasa Informasi dan Komputer Vol 6, No 1 (2023): JURNAL TRIK - POLITEKNIK NEGERI LHOKSEUMAWE
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jtrik.v6i1.4701

Abstract

The flow of news regarding the development of Covid-19 has dominated various information channels in Indonesia in the last 2 years, either through print or digital media. Various types of news related to Covid-19 continue to circulate, including hoax news. One of the most widely circulated hoax news is the news about the Covid-19 vaccine. The rise of information containing hoax news and untrue rumors about the Covid-19 vaccine in the community can worsen the pandemic situation. Currently, there is no intelligent system capable of classifying hoaxes about the Covid-19 vaccine. To maximize the prevention of the spread of hoax news about the Covid-19 vaccine and overcome the problems faced, the researchers designed a classification system for hoax news about the Covid-19 vaccine with a machine learning approach. The system built can classify news with a combination of the Backpropagation Name Entity Recognition (NER) algorithm. Dataset used is 600 Covid-19 vaccine news data obtained from the sites https://turnbackhoax.id/ and https://www.kompas.com/ with the keyword "vaksin covid". Dataset divided into two, training data and test data. The training data is preprocessed and then used in model design. Test data is used to evaluate the results of model design. This process produces a machine learning model with accuracy rate of 97,62%. From these results, the system is able to classify news texts about Covid-19 vaccine. From these results, the system is able to classify news texts about Covid-19 vaccine. Keywords — Backpropagation, Hoax news, NER
Rancang Bangun Aplikasi Diagnosa Penyakit Gigi dan Mulut Menggunakan Metode Fuzzy Tsukamoto Berbasis Android Radhiyatammardhiyyah, Radhiyatammardhiyyah; Nevrisa, Afla; Zulman, Muhammad Reza
Jurnal Teknologi Rekayasa Informasi dan Komputer Vol 6, No 1 (2023): JURNAL TRIK - POLITEKNIK NEGERI LHOKSEUMAWE
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jtrik.v6i1.4962

Abstract

Ketidakhadiran seorang dokter gigi atau ahlinya yang bisa menentukan penyakit gigi dan mulut yang diderita dan bagaimana cara pengobatannya mengakibatkan proses penyembuhan menjadi sedikit lama atau bahkan mengakibatkan hal yang fatal bagi pasien tersebut. Berdasarkan permasalahan tersebut maka dibuat suatu sistem pakar untuk mendiagnosa penyakit gigi dan mulut. Sistem menampilkan pilihan gejala yang dapat dipilih oleh user, dimana setiap pilihan gejala yang telah dipilih dapat membuat user mendapatkan hasil akhir. Metode sistem pakar yang digunakan adalah fuzzy tsukamoto. Sistem yang dibangun akan dapat menangani masalah ketidakpastian seperti intensitas gejala seperti Ringan, Sedang, atau Berat yang berbeda-beda untuk tiap penyakit. Dari hasil pengujian didapatkan kesimpulan bahwa penentuan domain fuzzy sangat mempengaruhi hasil akhir diagnosaKata kunci— Sistem pakar, Kecerdasan buatan, Penyakit gigi dan mulut, Fuzzy Inference system Tsukamoto, Aplikasi Android.
Pembuatan Game Royal Coin Saputra, Ridho; Aswandi, Aswandi; Amri, Amri
Jurnal Teknologi Rekayasa Informasi dan Komputer Vol 6, No 1 (2023): JURNAL TRIK - POLITEKNIK NEGERI LHOKSEUMAWE
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jtrik.v6i1.4788

Abstract

Games have become popular among the community, including forms of entertainment, support for them, computers have provided the full potential to do one of the creative industries that is growing very rapidly and the interest of many people is the game. This game is designed using Unity, randomly raises obstacles in games in 3 different directions. When playing a game, you will get 3 health aids to use the game if there is a collision with the obstacle in the game. Score reputation for obstacles. Constraints will appear randomly in the game. Keywords : Game, Score, Random Obstacle
Penerapan Metode Backpropagation untuk Mengidentifikasi Penyakit ISPA pada Balita (Studi Kasus RSUD Pasaman Barat) Nevrisa, Afla; Radhiyatammardhiyyah, Radhiyatammardhiyyah; Nasir, Muhammad
Jurnal Teknologi Rekayasa Informasi dan Komputer Vol 6, No 1 (2023): JURNAL TRIK - POLITEKNIK NEGERI LHOKSEUMAWE
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jtrik.v6i1.4963

Abstract

Secara umum kabut asap dapat mengganggu kesehatan semua orang, baik yang dalam kondisi sehat maupun dalam kondisi sakit. Pada kondisi kesehatan tertentu, orang akan menjadi lebih mudah mengalami gangguan kesehatan akibat kabut asap dibandingkan orang lain, khususnya pada orang dengan gangguan paru dan jantung, lansia, dan anak – anak. Di Kota Medan penyakit ISPA sebanyak 225.494 kasus (47,62%) dan di Kabupaten Deli Serdang kasus ISPA sebanyak 12.871 kasus (31,7%). Kabupaten Deli Serdang dan Kota Medan merupakan daerah yang mempunyai angka morbiditas yang tinggi terhadap kejadian ISPA pada balita. Jaringan Syaraf Tiruan dalam mendiagnosa jenis penyakit menyimpan sejumlah data, meliputi informasi pada gejala, diagnosis, dan informasi lainnya Pelatihan jaringan dapat dipresentasikan dengan input yang terdiri dari serangkaian gejala yang diidap oleh penderita. Setelah itu jaringan syaraf akan melatih input gejala tersebut, sehingga ditemukan suatu akibat dari gejala tersebut yaitu jenis penyakitnya.Kata Kunci - Kabut Asap, ISPA, Balita, Jringan Syaraf Tiruan, Matlab, RSUD Pasaman Barat.
Sistem Pakar Diagnosa Tingkat Depresi pada Mahasiswa Menggunakan Metode Fuzzy Tsukamoto Berbasis Web Yuliana, Yuliana; Arhami, Muhammad; Hendrawaty, Hendrawaty
Jurnal Teknologi Rekayasa Informasi dan Komputer Vol 6, No 1 (2023): JURNAL TRIK - POLITEKNIK NEGERI LHOKSEUMAWE
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jtrik.v6i1.4705

Abstract

Depression is a mental disorder in the nature of feelings or moods characterized by symptoms of moodiness,lethargy, no passion for life, feeling useless, deep disappointment, hopelessness, thoughts of death and suicidal ideation. Ifyou experience feelings of sadness and hopelessness, it is normal for someone to feel, but if the condition is experienced for months for no apparent reason. So it can be concluded that one of the signs of depression that appears. In general, depression can be divided into three levels, namely mild depression, moderate depression and severe depression. Depression can happen to everyone, including in the world of education such as students. The level of depression in college students has increased compared to the age of children and adults. People with depression tend not to pay attention to their diet and physical activity. In general, students do not know how much depression is experienced and students also do not have knowledge about how to prevent depression, so we need a system that can diagnose depression levels. Based on these problems, an expert system was designed to diagnose the level of depression in students using the Web-based Fuzzy Tsukamoto method. This system is designed for Lhokseumawe State Polytechnic students. This system uses the Fuzzy Tsukamoto method which is used to diagnose depression levels in students. The results of the percentage of test dataobtained in this system are 76%.Keywords — Expert System, Diagnosis, Depression, Fuzzy Tsukamoto, Web

Page 1 of 1 | Total Record : 8