cover
Contact Name
Andri Agus Rahman
Contact Email
jurnal@rmpi.brin.go.id
Phone
+6282120080815
Journal Mail Official
eksplorium@brin.go.id
Editorial Address
Gd. 720, KST BJ Habibie, Kawasan Puspiptek Serpong, Tangerang Selatan 15314
Location
Kota bogor,
Jawa barat
INDONESIA
Eksplorium : Buletin Pusat Pengembangan Bahan Galian Nuklir
ISSN : 08541418     EISSN : 2503426X     DOI : https://doi.org/10.55981/eksplorium
EKSPLORIUM is published to deliver the results of studies, research and development in the field of nuclear geology. The manuscripts are the result of study, research and development of nuclear geology with scope: geology, exploration, mining, nuclear minerals processing, safety and environment, and development of nuclear technology for the welfare.
Articles 5 Documents
Search results for , issue "Vol. 36 No. 1 (2015): MEI 2015" : 5 Documents clear
Karakteristik Unsur Jejak Dalam Diskriminasi Magmatisme Granitoid Pulau Bangka Widana, Kurnia Setiawan; Priadi, Bambang
EKSPLORIUM Vol. 36 No. 1 (2015): MEI 2015
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2015.36.1.2766

Abstract

Geology of Bangka Island consists by variation of granite as Klabat Granitoid scattered in various locations. Trace elements can be applied in magmatism discrimination of granitoid.The purpose of this study was to determine the characteristics Bangka Island granitoid based on trace element geochemistry to be applied in the study of magmatism, source and tectonic situation. Geochemical analyses method used are the Neutron Activation Analysis (NAA) and portableX-Ray Fluorescence (pXRF) for qualitative and quantitative analyses on 27 samples of Klabat granitoid on Bangka Island. This study concluded granitoid East Bangka (Belinyu) and Central Bangka as crust-mantle mixing with affinityCalc-Alkaline, characteristic of I Type while South and West Bangka granitoid crust origin with affinity high K Calc-Alkaline as S Type. Expectedmagmatismdiscrimination ofgranitoidhelpfulin providingradioactive mineral explorationguidein BangkaIsland.
Analisis Karakteristik Massa Batuan di Sektor Lemajung, Kalan, Kalimantan Barat Syaeful, Heri; Kamajati, Dhatu
EKSPLORIUM Vol. 36 No. 1 (2015): MEI 2015
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2015.36.1.2768

Abstract

Rock mass characterization is required in design of rock opening, which calculation of engineering characters of rock mass become one important parameter toconsider. Lemajung sector is one of prospect area for uranium mining in Kalan, West Kalimantan. Purpose of research is to acquire rock mass characteristicsas basic data for planning the development of mining technique of ore deposit. Methodology applied is rock sampling for rock mechanic laboratory analysis, observation of joints, and observation of groundwater condition. Rock parameters analyzed includes uniaxial compressive strength (UCS), rock quality designation (RQD), joint spacing, joint condition, and groundwater. Analysis concluded that metasiltstonewhich is lithology contained uranium in Lemajung Sector has rock mass rating (RMR) value of 56 or rock mass class III: fair rock in the depth of around 60 m, and in the depth of 280 m RMR value reach 82 or rock mass class I: very good rock. RMR value data furthermore could be used for analysis of tunneling in the model of underground mine or slope stability analysis in the model of open pit mine.
Tataan Tektonika Batuan Gunung Api di Komplek Adang Kabupaten Mamuju Provinsi Sulawesi Barat Sukadana, I Gde; Harijoko, Agung; Setijadji, Lucas Donny
EKSPLORIUM Vol. 36 No. 1 (2015): MEI 2015
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2015.36.1.2769

Abstract

Adang volcanic complexlocated in Mamuju Region, West Sulawesi can be grouped more detail into seven complexes that are Tapalang, Ampalas, Adang, Malunda, Karampuang, Sumare, and Labuan Rano. Adang complex is one of the main volcanic complexes that still can be identified with good morphological formations. This complex is composed of alkaline volcanic rocks with basic to intermediates composition that have high value of radiation dose rate caused by their radioactive mineral content. Radioactive mineral occurrences on the basaltic-andesitic rocks has never been found in Indonesia, so it becomes very interesting to do research mainly tectonic settings of the volcanic rock complex formation. The purpose of this study is to determine magmatiic typology related with the tectonic setting based on volcanic rock geochemistry using X-Ray Fluorences (XRF) analysis. Adang volcanic rock is the result of a complex process of volcanism having a volcanic center and several lava domes. They are composed of phonolite to dacite rock, with ultrapotassic affinity, interpretation of data concluded that tectonic setting of magmatism formed in active continental margin (ACM). Magmatism source from vulcanic activities influenced by South WestSulawesi micro-continental crust.
Evaluasi Ketidakpastian Pengukuran Multi-Unsur Dalam Mineral Zirkon Dengan Metode Analisis Aktivasi Neutron Sukirno, Sukirno; Murniasih, Sri; Rosidi, Rosidi; Samin, Samin
EKSPLORIUM Vol. 36 No. 1 (2015): MEI 2015
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2015.36.1.2770

Abstract

The evaluation of multi-elements analysis has been carried out with calculation of element uncertainy in the zircon mineral from Sampit (Central Kalimantan) dan Bangka has been evaluated by the Neutron Activation Analysis (NAA) method. The purpose of this research is determination of composition and value of multi-elements uncertainty in the mineral of zircon to fulfil the requirements of ISO/IEC guide 17025-2008 that applied at NAA laboratory. The result of analysis using gamma spectrometry with a HPGe detector showed of 21 detected elements, divided into three groups (major, minor, and trace). Evaluation of uncertainty estimation should be done to increase quality and confidence rate of analysis results. The result of testing are not mean without calculation of uncertainty. Therefore, it was assessed the uncertainty measurement of all elements analysis in zircon mineral. The results of quantitative analysis is Zr with the highest concentration value of 38.986% and value of uncertainty is 0.331% so that value of real concentration is 38.986 ± 0.331%. In the form of oxide (ZrO2) has concentration of 52.661±0.45%. Sb element is the lowest element detected with value of concentration and uncertainty is 7±0,3 µg/g. In the form of oxide (Sb2O3) has concentration is 17±0.9 µg/g. The oxide composition and the must important of chemicals in the zircon sand mineral more significant from Sampit which quantitative composition areZrO2+HfO2 (53-55%), F2O3 (5-6%), TiO2 (13-14%), Al2O3 (1.5-2%) and SiO2. Elements ofSi(SiO2) can not be determinedbyNAAmethodbecauseSi cross-sections is verysmall.
Identifikasi Batuan Gunung Api Purba di Pegunungan Selatan Yogyakarta Bagian Barat Berdasarkan Pengukuran Geolistrik Winarti, Winarti; Hartono, Hill Gendoet
EKSPLORIUM Vol. 36 No. 1 (2015): MEI 2015
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2015.36.1.2771

Abstract

The study area is located between western part of Yogyakarta plains and Southern Mountains. The morphology and lithology along the Berbah-Imogiri show the existence of an ancient volcano. This is proven by outcrop of volcanic rock like lava, breccia and tuff. The aim of this study is to identify the existence of ancient volcanic rocks along Berbah-Imogiri based on geoelectrical data. The method used to perform measurements at four locations geoelectrical mapping with dipole-dipole configuration a long stretch of track for every 500 meters. Geoelectrical measurement results showed on track 1 in Source Kulon-Kalitirto, District Berbah, interpretedas volcanic rocks such as basalt lava and tuff. Tracks 2 in Pilang-Srimulyo, District Piyungan, iterpreted as volcanic rocks of scoria breccia. Tracks 3 in Ngeblak-Bawuran, District Pleret, interpreted as lava and tuff. And track 4 on Guyangan-Wonolelo, District Pleret interpreted as form of tuff and lava. Volcanic rocks are generally having a high resistivity value > 300 Ωm. The content of water or mineralization tends to reduce the resistivity value of resistant volcanic rock.

Page 1 of 1 | Total Record : 5