cover
Contact Name
-
Contact Email
informatika@unan.ac.id
Phone
+6282241418157
Journal Mail Official
informatika@unan.ac.id
Editorial Address
https://julia.ejournal.unan.ac.id/index.php/1/editorialTeam
Location
Kab. grobogan,
Jawa tengah
INDONESIA
Julia Jurnal
Published by Universitas An Nuur
ISSN : -     EISSN : 28294459     DOI : -
Core Subject : Science,
Julia is an open access journal. Readers may read, download, copy, distribute, print, search, or link to the full text of this article free of charge. All submitted papers will be peer reviewed before being accepted for publication. Authors who wish to submit manuscripts to Julia must follow the norms described in the guidelines.
Articles 27 Documents
PENERAPAN SISTEM INFORMASI STOK BARANG BERBASIS APLIKASI UNTUK MENINGKATKAN EFISIENSI PENGELOLAAN INVENTARIS PADA TOKO SEMBAKO Agus Condro Wibowo; Dwi Kurniawan Aprilianto; Ahmad Yususf Mufarihin; Andri Triyono; Dhika Malita Puspita Arum
Julia: Jurnal Ilmu Komputer An Nuur Vol 5 No 1 (2025): Julia Jurnal
Publisher : LPPM Universitas An Nuur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35720/julia.v5i1.22

Abstract

Perkembangan teknologi informasi yang berkembang pesat memberikan dampak yang signifikan ke berbagai sektor, seperti pengelolaan inventaris di sektor ritel. penelitian ini bertujuan untuk menerapkan sistem informasi yang berbasis aplikasi untuk stock barang agar meningkatkan efisiensi pengelolaan inventaris pada toko. aplikasi yang di bangun di harapkan dapat mempermudah pemantauan stok barang, mempercepat proses pencatatan transaksi, serta meminimalisir kesalahan dalam mengelola data stock. metode yyang di gunakan dalam penelitian ini adalah pengembangan aplikasi berbasis perangkat lunak yang dapat memberikan hasil laporan inventaris secara akurat. hasil yang di harapkan dari penerapan sistem informasi ini adalah pengurangan tingkat kesalahan, serta pengelolaan stok yang lebih mudah dan cepat. Penelitian ini memiliki kontribusi dalam memberikan solusi bagi toko-toko untuk menghadapi tantangan pengelolaan inventaris yang lebih kompleks di era digital sekarang. 
PREDIKSI LUAS PANEN DI KECAMATAN PURWOADADI MENGGUNAKAN ALGORITMA REGRESI LINEAR BERGANDA Muhammad Akbar Mustofa; Andri Triyono; Agus Susilo Nugroho
Julia: Jurnal Ilmu Komputer An Nuur Vol 5 No 1 (2025): Julia Jurnal
Publisher : LPPM Universitas An Nuur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35720/julia.v5i1.23

Abstract

Agriculture, particularly rice cultivation, is highly vulnerable to climate change because it depends on water cycles and weather conditions to maintain productivity. Climate change affects crop growth, development, and yields, as agricultural activities are heavily dependent on weather and climate. This study utilizes data mining to introduce a new breakthrough in addressing rice farming issues in Grobogan Regency, Purwodadi District. The method used is multiple linear regression, with the dependent variable being harvested area and the independent variables including plxanted area and rainfall. The objective of this research is to test and develop data mining methods to predict yield levels, thereby assisting local governments in decision-making during crop failures, based on agricultural data from 20192023. The research process involves data collection, preprocessing, algorithm implementation, and result evaluation. The analysis shows that the multiple linear regression model provides reasonably accurate predictions, with a Root Mean Square Error (RMSE) value of 209.042 and a Relative Root Squared Error (RRSE) of 0.111. Furthermore, the analysis reveals that planted area significantly influence the harvested area. These findings offer insights for local governments as policymakers in providing aid during crop failures. 
Sistem Penjualan Pakaian Online "tukuCALAMBY" Anjar Septinegara; Neda Cisya Tama, Freshma; Rodliyati Karima, Isyatin; Imam Santoso, Kartika; Malita Puspita Arum, Dhika
Julia: Jurnal Ilmu Komputer An Nuur Vol 5 No 2 (2025): julia.ejournal.unan.ac.id
Publisher : LPPM Universitas An Nuur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35720/julia.v5i2.26

Abstract

The development of information and communication technology has changed the way consumers shop, especially in the fashion and clothing industry. This study aims to develop an online clothing ordering system called “tukuCALAMBY.” This system is useful for improving the efficiency of the sales process and providing convenience for customers when shopping. The system is designed using a web-based approach with two main actors, namely the admin and the customer. The system development method employs the Software Development Life Cycle (SDLC) approach using the Waterfall model by Sommerville. The design utilizes system modeling with the Unified Modeling Language (UML). The development results demonstrate that the “tukuCALAMBY” system successfully integrates features for managing product data, ordering, payment, and reporting into a single user-friendly platform. This system provides an effective solution to expand market reach and improve operational efficiency for online clothing stores. User Acceptance Testing (UAT) involving 20 users yielded a testing result of 92%.
TRANSFORMASI DIGITAL UMKM PERCETAKAN: OPTIMALISASI PLATFORM ECOMMERCE TERINTEGRASI PADA ESPRINT.STORE Nabil, Muhammad Nabil Musyarof; Musyarof, Muhammad Nabil; Kisnandhya Putra, Afif; Naufal Islam, Nibroos; Dwi Astuti, Rizky; Imam Santoso, Kartika; Triyono, Andri
Julia: Jurnal Ilmu Komputer An Nuur Vol 5 No 2 (2025): julia.ejournal.unan.ac.id
Publisher : LPPM Universitas An Nuur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35720/julia.v5i2.27

Abstract

Digital transformation has become a strategic necessity for Micro, Small, and Medium Enterprises (MSMEs), particularly in the printing sector which demands speed, flexibility, and personalized services. This study aims to examine the effectiveness of the esprint.store platform as a web-based eCommerce solution integrated with WhatsApp API and a dynamic pricing system. A mixed-method approach was employed, combining Google Analytics data, a System Usability Scale (SUS) questionnaire from 120 respondents, and system architecture observation. The results indicate a 35% increase in sales conversion and a reduction in customer response time from 24 hours to 15 minutes. These findings suggest that digitalization through a simple yet functional system can enhance service efficiency and customer satisfaction within the MSME.
Optimalisasi Manajemen Kampanye Airdrop Kripto pada Blockchain Layer 1 dan Layer 2 dalam Fase Pengembangan: Studi Kasus Implementasi AirdropHub Afif Kisnandhya Putra; Nabil Musyarof, Muhammad
Julia: Jurnal Ilmu Komputer An Nuur Vol 5 No 2 (2025): julia.ejournal.unan.ac.id
Publisher : LPPM Universitas An Nuur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35720/julia.v5i2.28

Abstract

This study analyzes the optimalization strategies for managing crypto airdrop campaigns on Layer 1 blockchain projects (e.g., Ethereum, Solana) and Layer 2 projects (e.g., Polygon, Arbitrum) during the development phase, with a focus on the AirdropHub platform based on native PHP MVC. This study evaluates the effectiveness of AirdropHub in supporting the planning, execution, and monitoring of airdrop campaigns, particularly through its daily quest management and wallet participation tracking features. A descriptive-analytical approach was used with a case study on AirdropHub, involving observations of system functionality, analysis of participation data, and evaluation of technological architecture. The results show that AirdropHub is capable of efficiently managing airdrop campaigns with CRUD features and activity tracking, although challenges such as system scalability and blockchain integration remain. This research provides practical insights for blockchain developers and community managers in designing structured, secure airdrop campaigns that encourage community engagement.
AI-BAHSI: Metode Hibrid Artificial Intelligence-Behavioral Analysis dan Hybrid Security Intelligence untuk Deteksi dan Mitigasi Ancaman Real-time pada Wireless Access Point Emmanuel, Rheimanda Devin Emmanuel; Emmanuel, Rheimanda Devin; Anggraini, Ani; Condro Wibowo, Agus; Imam Santoso, Kartika; Supriyadi, Eko
Julia: Jurnal Ilmu Komputer An Nuur Vol 5 No 2 (2025): julia.ejournal.unan.ac.id
Publisher : LPPM Universitas An Nuur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35720/julia.v5i2.30

Abstract

Wireless access point (AP) security faces significant challenges with the emergence of sophisticated attacks such as SSID Confusion (CVE-2023-52424), KRACK attacks, and advanced persistent threats. This research develops a hybrid AI-BAHSI (Artificial Intelligence-Behavioral Analysis and Hybrid Security Intelligence) method that integrates deep learning, ensemble machine learning, and federated learning for real-time threat detection and mitigation on wireless access points. The proposed method combines Convolutional Neural Network-Long Short Term Memory (CNN-LSTM) for pattern recognition, Random Forest-Support Vector Machine ensemble for threat classification, and federated learning for privacy-preserving security intelligence. Evaluation was conducted on a synthetic dataset that includes 15,000 normal traffic samples and 8,500 attack samples of various types. The results show that AI-BAHSI achieves a detection accuracy of 98.7%, a precision of 97.3%, a recall of 98.1%, and an F1-score of 97.7% with a false positive rate of only 1.2%. This method successfully detected zero-day attacks with a 94.6% confidence level and was able to automatically mitigate them in an average of 0.8 seconds. The main contribution of this research is the development of an adaptive security framework that can learn from new attack patterns in real time while preserving privacy through a federated learning architecture.
SMART-GUARD: Self-adaptive Multi-Agent Reinforcement learning Threat Guard dengan Game Theory dan Consensus Mechanisms untuk Enhanced Wireless Access Point Security  Aprilianto, Dwi Kurniawan; Yusuf Mufarihin, Ahmad; Najhan Atifa, Akhie; Supriyadi, Eko; Imam Santoso, Kartika
Julia: Jurnal Ilmu Komputer An Nuur Vol 5 No 2 (2025): julia.ejournal.unan.ac.id
Publisher : LPPM Universitas An Nuur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35720/julia.v5i2.32

Abstract

Kompleksitas serangan cyber terhadap wireless access point semakin meningkat dengan munculnya adversarial AI dan coordinated attack scenarios. Penelitian ini mengembangkan framework SMART-GUARD (Self-adaptive Multi-Agent Reinforcement learning Threat Guard) yang mengintegrasikan multi-agent reinforcement learning (MARL), game theory, dan consensus mechanisms untuk membangun sistem pertahanan adaptif dan kolaboratif. Framework yang diusulkan menggabungkan Deep Q-Networks (DQN) dengan hierarchical multi-agent architecture, Stackelberg game untuk strategic defense planning, Self-Organizing Maps (SOM) untuk threat clustering, dan Byzantine-fault tolerant consensus untuk koordinasi terdistribusi. Evaluasi dilakukan pada testbed yang mensimulasikan 20 access points dengan 500 client devices dan 15 jenis serangan berbeda. Hasil eksperimen menunjukkan SMART-GUARD mencapai defense success rate 97.4%, mean response time 1.2 detik, dan resource utilization efficiency 89.3%. Framework ini mampu beradaptasi dengan 12 jenis zero-day attacks dengan confidence level 92.8% dan menunjukkan scalability yang superior hingga 1000+ access points. Kontribusi utama penelitian ini adalah pengembangan self-adaptive defense ecosystem yang dapat melakukan strategic decision making secara autonomous melalui game-theoretic analysis dan koordinasi multi-agent yang fault-tolerant.

Page 3 of 3 | Total Record : 27