cover
Contact Name
Utama Alan Deta
Contact Email
utamadeta@unesa.ac.id
Phone
+628993751753
Journal Mail Official
jpfa@unesa.ac.id
Editorial Address
Fakultas Matematika dan Ilmu Pengetaahuan Alam Jl. Ketintang, Gd C3 Lt 1, Surabaya 60231
Location
Kota surabaya,
Jawa timur
INDONESIA
Jurnal Penelitian Fisika dan Aplikasinya (JPFA)
ISSN : 20879946     EISSN : 24771775     DOI : https://doi.org/10.26740/jpfa
Core Subject : Science, Education,
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) is available for free (open access) to all readers. The articles in JPFA include developments and researches in Physics Education, Classical Physics, and Modern Physics (theoretical studies, experiments, and its applications), including: Physics Education (Innovation of Physics Learning, Assessment and Evaluation in Physics, Media of Physics, Conception and Misconceptions in Physics, hysics Philosophy anPd Curriculum, and Psychology in Physics Education); Instrumentation Physics and Measurement (Sensor System, Control System, Biomedical Engineering, Nuclear Instrumentation); Materials Science (Synthesis and Characteristic Techniques, Advanced Materials, Low Temperature Physics, and Exotic Material); Theoretical and Computational Physics (High Energy Physics, Gravitation and Cosmology, Astrophysics, Nuclear and Particle Phenomenology, and Computational and Non-Linear Physics); and Earth Sciences (Geophysics and Astronomy).
Articles 12 Documents
Search results for , issue "Vol. 10 No. 2 (2020)" : 12 Documents clear
The Effect of Non-Seasonal Climate Variations on Extreme Rainfall Events in Early Rainy Season Onset in Southest West Java Province Agus Safril; Hadi Saputra; Siswanto Siswanto; Aulia Nisaul Khoir; Aditya Kusuma Al Arif
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 2 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n2.p173-187

Abstract

The region of Tasikmalaya, Garut, and Pangandaran (hereafter mentioned as Southeast West Java Province) experienced extreme precipitation that occurred on September 16, 2016, October 6, 2017, and November 5, 2018, which then followed by flood. The characteristics of these extreme rainfall events need to be communicated to the related disaster management agency and the local citizens as a part of understanding the risks and disaster mitigation. This paper aims to determine the relation between extreme rainfall and non-seasonal climate variations such as Madden Julian Oscillation (MJO), El Niño Southern Oscillation (ENSO), tropical storm, and local circulation that occur simultaneously. Atmosphere and ocean data, including daily rainfall, precipitable water, cloud satellite imagery, wind and sea surface temperature were used. Descriptive statistical analysis, atmospheric dynamics, and physical atmosphere were applied to characterize the event, spatially and temporally. The results showed that the MJO was a non-seasonal factor that always exists in these three early rainy season extreme rainfall events in the region. Other non-seasonal factors such as interaction between La Nina and tropical disturbance; La Nina and local circulation; and El Nino and local circulation also affected the extreme rainfall events. We conclude that the intra-seasonal climate variation of MJO and inter-annual climate anomaly of La Nina/ El Nino, tropical storm, and local circulation are among the weather generators for extreme rainfall during early rainy season (September to November) in the Southeast West Java Province.
Effect of Sintering and Concentration of Dymethylformamide on Surface Properties of Hydroxyapatite Coating on Titanium Substrate Fabricated by Electrophoretic Deposition Mochammad Dachyar Effendi; Razie Hanafi; Utari Pusparini; Sara Aisyah Syafira
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 2 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n2.p90-102

Abstract

Hydroxyapatite (HAp) coating on metallic implant was developed to increase bioactivity of orthopaedic implant. In this work, hydroxyapatite was successfully deposited on commercially pure titanium (CP-Ti) substrate by electrophoretic deposition (EPD). This work aims to determine the effect of dimethylformamide (DMF) as dispersant for EPD suspension followed by heat treatment, on the surface morphology of the HAp coating. HAp powder was suspended in an ethanol-DMF solution with the amount of DMF designed at 0, 5, 10, and 15% per 100 mL suspension. EPD was then performed successfully on all samples. After EPD, the specimens were sintered at 800 °C for 120 minutes in argon atmosphere. Surface morphology, composition, and phase of HAp coating before and after sintering were characterized by Scanning Electron Microscope, Fourier Transform Infrared Spectrometer, and X-ray Diffractometer. X-ray and IR spectra confirmed that sintering had a little effect on the chemical structure and the phase of the deposited HAp. The morphology of the surface is denser across all samples and shows distinguishable features as the amount of DMF in the system was increased. The 15% DMF sample exhibits the mostly grooved surface after sintering. Further analysis showed that sintering reduced the EPD-related shrinkage on the surface and enhanced the size of the pores. Microstructural indication referring to previous research suggested that this type of microscopic surface is very sought after in promoting a good biological interaction between the implant and the host. Further testing must be done to confirm the effect of DMF-modified structure in living tissue.
Reconstruction of High Resolution Medical Image Using General Regression Neural Network (GRNN) Yudha Satya Perkasa; Khoerun Nisa Syaja'ah; Lyana Ismadelani; Rena Denya Agustina
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 2 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n2.p137-145

Abstract

Low image resolution has deficiencies in the diagnostic process, this will affect the quality of the image in describing an object in certain tissues or organs, especially in the process of examining patients by doctors or physicians based on the results of imaging medical devices such as CT-scans, MRIs and X-rays. Therefore, this study had developed a General Regression Neural Network (GRNN) type artificial neural network system to reconstruct a medical image so that the image has a significant resolution for the analysis process. The GRNN input layer uses grayscale intensity values with variations in the image position coordinates to produce an optimal resolution. There are four layers in this method, the first is input layer, the second is hidden layer, the third is summation, and the last layer is output. We examined the two parameters with different interval values of 0.2 and of 0.5. The result shows that the interval value of 0.2 is the optimal value to produce an output image that is identical to the input image. This is also supported by the results of the intensity curve of the RGB pattern matched between target and output.
Analysis of Tsunami Inundation due in Pangandaran Tsunami Earthquake in South Java Area Based on Finite Faults Solutions Model Ramadhan Priadi; Dede Yunus; Berlian Yonanda; Relly Margiono
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 2 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n2.p114-124

Abstract

On July 17, 2006 an earthquake with a magnitude of  7.7 triggered a tsunami that struck 500 km of the coast in the south of the island of Java. The tsunami generated is classified as an earthquake tsunami because the waves generated were quite large compared to the strength of the earthquake. The difference in the strength of the earthquake and the resulting tsunami requires a tsunami modeling study with an estimated fault area in addition to using aftershock and scaling law. The purpose of this study is to validate tsunamis that occur based on the estimation of the source mechanism and the area of earthquake faults. Determination of earthquake source mechanism parameters using the Teleseismic Body-Wave Inversion method that uses teleseismic waveforms with the distance recorded waveform from the source between  Whereas, tsunami modeling is carried out using the Community Model Interface for Tsunami (commit) method. Fault plane parameters that obtained were strike , dip , and rake  with dominant slip pointing up to north-north-west with a maximum value of 1.7 m. The fault plane is estimated to have a length of 280 km in the strike direction and a width of 102 km in the dip direction. From the results of the tsunami modeling, the maximum inundation area is 0.32 km2 in residential areas flanked by Pangandaran bays and the maximum run-up of 380.96 cm in Pasir Putih beach area. The tsunami modeling results in much smaller inundation and run-up from field observations, it was assumed that the fault plane segmentation had occurred due to the greater energy released than the one from the fault area, causing waves much larger than the modeling results.
The Existence of Fourier Coefficients and Periodic Multiplicity Based on Initial Values and One-Dimensional Wave Limits Requirements Adi Jufriansah; Azmi Khusnani; Arief Hermanto; Mohammad Toifur; Erwin Prasetyo
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 2 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n2.p146-157

Abstract

Physical systems in partial differential equations can be interpreted in a visual form using a wave simulation. In particular, the interpretation of the differential equations used is in the nonlinear hyperbolic model, but in its completion, there are some limitations to the stability requirements found. The aim of this study is to investigate the analytical and numerical analysis of a wave equation with a similar unit and fractal intervals using the Fourier coefficient. The method in this research is to use the analytical solution approach, the spectral method, and the finite difference method. The hyperbolic wave equation's analytical solution approach, illustrated in the Fourier analysis, uses a pulse triangle. The spectral method minimizes errors when there is the addition of the same sample grid points or the periodic domain's expansion with a trigonometric basis. Meanwhile, different ways offer a more efficient solution. Based on the research results, the information obtained is that the Fourier analysis illustrates the pulse triangle use to solve the solution. These results are also suitable for adding sample points to the same spectra. Fourier analysis requires a relatively long time to solve one pulse triangle graph to need another solution, namely the finite difference method. However, its use is still limited in terms of stability when faced with more complex problems.
The Effectivenes of Modeling Instruction Learning on Students Conceptual Understanding of Rotational Dynamic Sherly Verlinda; Sutopo Sutopo; Eny Latifah
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 2 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n2.p158-172

Abstract

Rotational Dynamics is one of the physics topics which is quite difficult for students. Several previous studies showed students difficulties on this topic, one of which is the aspect of students conceptual understanding. Modeling instruction is the effective approach to improve students understanding. This model is in line with constructivist theory and cognitive model theory. This research aimed to examine the effectiveness of modeling instruction that we developed to improve students' conceptual understanding of rigid body mechanics, where the knowledge of particle mechanics serve as anchor or bridging to develop model of rigid body. This research used mixed method with embedded experimental design. It used one group pretest-posttest design and involved 65 students of a high school in Malang as the subject. Data were gathered using test consisting of 17 multiple-choice items with explanation. The students scores were analyzed quantitatively using t-test and N-gain to measure the improvement of students understanding, while the students' reasons were analyzed qualitatively. The results showed the average students score increased from 1.62 to 9.92 with N-gain of 0.54 (in upper medium category). We concluded that the modeling instruction was effective to improve students conceptual understanding.
Design of low-cost and simple reconstruction method for Three Dimensional Electrical Impedance Tomography (3D-EIT) Imaging Endarko Endarko; Ari Bangkit Sanjaya Umbu
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 2 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n2.p125-136

Abstract

Electrical impedance tomography is a non-invasive imaging modality that uses the electrical conductivity distribution to reconstruct images based on potential measurements from the object's surface. The proposed study was to design and fabricate a low-cost and simple reconstruction method for 3D electrical impedance tomography imaging. In this study, we have been successfully developed 3 Dimensional Electrical Impedance Tomography (3D-EIT) system using 16 copper electrodes (Cu) to detect and reconstruct the presence of objects in the Phantom. 3D-EIT was developed using Phantom as a test object with PVC pipe material, with an inner diameter of 7.2 cm and a height of 5.4 cm. Electrodes were arranged in two rings, with each ring having eight electrodes arranged in a planar line. Furthermore, the Gauss-Newton algorithm and Laplace prior regularization were used to image reconstruction of objects inside the Phantom using voltage measurement produced from sequential pairs of neighboring electrodes. The voltage is obtained from the injection of a constant current of 1 mA at 20 kHz into the system's electrode pairs. The objects used in this research are PVC pipe, solid aluminum, PVC pipes filled with wax glue, and copper trusses. The results obtained show that the reconstruction results can provide information about the position, the electrical properties, and the shape of real objects. Finally, the system can detect the location, height, and electrical properties of objects for all variations of angle and height variations.
Development of Non-Invasive Blood Glucose Level Monitoring System using Phone as a Patient Data Storage Riska Ekawita; Ahmad Azmi Nasution; Elfi Yuliza; Nursakinah Suardi; Suwarsono Suwarsono
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 2 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n2.p103-113

Abstract

Glucose levels that accumulate in the blood can cause other organ disorders and even cause death. To prevent such occurrence, continuous and regular glucose measuring and monitoring is required for diabetes mellitus (DM) patients. Glucose measurement for DM patients are generally performed several times a day, so be required easy, harmless method of measuring the DM patients, and monitoring data are well recorded. Thus in this research, an android non-invasive glucose level system with wireless communication and automatic data storage on the phones memory was developed. The study was begun with the built of electronic and software systems as the central part of the measuring system. The electronic section consists of laser and light sensors that respond to a change in blood glucose (BG) levels, the microcontroller that controlled all of the measuring processes, and Bluetooth modules as transceiver on data communication of the android. The software section is built using an App Inventor developed by the Massachusetts Institute of Technology (MIT) to display and store data measurement on the mobile phone. The calibration process of light sensors is done with the standard tool and at last, the wireless communication systems testing and BG levels measurement. The result shows that 94 mg/dl of BG levels by standard tools equals 2.86 volts of voltage measured by the design system. The higher the BG level, the lower the voltage be. Increase the BG level causes the resistance between the transmitter and the receiver to raise and the voltage becomes low.
Front Cover JPFA Vol 10 No 2 December 2020 Editor JPFA
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 2 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n2.pi

Abstract

Introduction, Author Guidlines, and Table of Contents JPFA Vol 10 No 2 December 2020 Editor JPFA
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 2 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n2.pii-vi

Abstract

Page 1 of 2 | Total Record : 12