cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Matematika
Published by Universitas Diponegoro
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 97 Documents
ANALISIS MODEL MATEMATIKA UNTUK PENYEBARAN VIRUS HEPATITIS B (HBV) Devi Larasati; Redemtus Heru Tjahjana
Jurnal Matematika Vol 1, No 1 (2012): jurnal matematika
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (498.411 KB)

Abstract

Infeksi Virus Hepatitis B (HBV) dapat dimodelkan dengan menggunakan model Suspected, Infected, dan Recovered (SIR). Persamaan-persamaan pada model merupakan sistem persamaan diferensial nonliner orde satu dengan tiga variabel.  Dari model SIR didapat 2 titik kesetimbangan yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik virus. Rasio reproduksi dasar didapat dari dua titik kesetimbangan, yang berguna untuk mengukur tingkat penyebaran virus. Untuk menganalisis kestabilan digunakan nilai Eigen dari matriks Jacobian dan Kriteria Routh-Hurwitz. Dari analisis kestabilan diketahui titik kesetimbangan bebas penyakit stabil jika R0<1 dan titik kesetimbangan endemik virus stabil jika R0>1 .
ANALISIS MODEL ANTRIAN PADA PADEPOKAN SILATURAHMI SEMARANG Minarsih Minarsih; Heru Tjahjana
Jurnal Matematika Vol 2, No 1 (2013): JURNAL MATEMATIKA
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstrakProses antrian adalah suatu proses yang berhubungan dengan kedatangan seorang pelanggan pada suatu fasilitas pelayanan, kemudian menunggu dalam suatu baris (antrian) apabila semua pelayannya sibuk, dan akhirnya meninggalkan fasilitas tersebut setelah memperoleh pelayanan. Proses antrian dapat terjadi dimana saja, termasuk di Padepokan Silaturahmi Semarang. Padepokan Silaturahmi pada waktu-waktu tertentu dihadapkan pada situasi dimana pasien yang datang tidak dapat dilayani secara langsung sehingga pasien harus menunggu dan terjadi penumpukan pasien. Oleh karena itu, diperlukan penerapan teori antrian pada sistem pelayanan di Padepokan Silaturahmi. Dari hasil analisis, model antrian yang digunakan di Padepokan Silaturahmi adalah Multi Channnel Single Phase dimana sistem antrian yang terdapat pada tahap pembekaman untuk laju kedatangan berdistribusi Poisson dan laju pelayanan berdistribusi Eksponensial. Model antrian terbaik pada sistem pelayanan Padepokan Silaturahmi yaitu (M/M/2) : (GD/∞/∞) untuk hari Senin sampai dengan Minggu.Kata kunci : Proses antrian, sistem antrian, model antrian, Padepokan Silaturahmi.
KUOSIEN SEMIRING DAN SEMIRING YANG DIBENTUK DARI KELAS-KELAS KONGRUENSI SUATU SEMIRING Atika Ayuningtyas
Jurnal Matematika Vol 4, No 4 (2015): (OKTOBER2015)
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

 ABSTRAK. An ideal of a semiring can be formed as set of all coset of ideal semiring. The set of all coset of ideal semiring can be formed a new semiring called quotient semiring. The congruence classes on a semiring can be formed as a new semiring called semiring congruence classes.Keywords : semiring, ideal, congruence, quotient semiring, semiring classes congruence. 
METODE MEHAR UNTUK SOLUSI OPTIMAL FUZZY DAN ANALISA SENSITIVITAS PROGRAM LINIER DENGAN VARIABEL FUZZY BILANGAN TRIANGULAR Marlia Ulfa Marlia Ulfa
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (265.218 KB)

Abstract

 ABSTRACT. Fuzzy linear programming problems containing closely with uncertainty about the parameters. Changes in the value of the parameters without changing the optimal solution or change the optimal solution is called sensitivity analysis. Sensitivity analysis is a basic for studying the effect of the changes that occur to the optimal solution. Linear programming with fuzzy variable is a form of fuzzy linear program is not fully because there are objective function coefficients and coefficients of constraints that are crisp numbers. Resolving the problem of linear programming with fuzzy variables by using mehar method will get solutions and optimal fuzzy value and solutions and optimal crisp value. To solve the problem of linear program with fuzzy variable is using mehar, must be converted beforehand in the form of crisp linear programming. This thesis explores mehar method to solve linear programming problems with fuzzy variables with triangular number and a sensitivity analysis on the optimum solution FVLP so that when there is a change of data of the problem, new solution will remain optimal.  
OPTIMALISASI SISTEM ANTRIAN PELANGGAN PADA PELAYANAN TELLER DI KANTOR POS (STUDI KASUS PADA KANTOR POS CABANG SUKOREJO KENDAL) Diyan Mumpuni; Bambang Irawanto
Jurnal Matematika Vol 3, No 4 (2014): JURNAL MATEMATIKA
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (462.345 KB)

Abstract

ABSTRAK. The problem occurs because there is a queue length of the queue at service facilities, or the presence of maids who are unemployed at the time of service due to vacancy queue. Services providers that can not be separated from the issue queue is the Post Office. queuing theory is used to determine the queuing model that can represent the state at the service counter, and to optimize the service time at the service counter. Queuing model of optimal service counter at the Post Office is  model queue. The highest number of customer arrivals during the study time on each date that is 20, if  model is applied on these days can lead to a buildup of the queue, so the queue model is used to optimally serve the customer every 20 is  model queue.   
MODEL PERTUMBUHAN EKONOMI MANKIW ROMER WEIL DENGAN PENGARUH PERAN PEMERINTAH TERHADAP PENDAPATAN Desi Oktaviani
Jurnal Matematika JURNAL MATEMATIKA NO 3 2016
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (179.854 KB)

Abstract

 ABSTRACT. Mankiw Romer Weil model is one of economic growth model. In this paper, we will present a Mankiw Romer Weil economic growth model development with role of government influence on income. Furthermore, invesment on human capital and physic capital expenditure is from net income and no longer using gross income. Net income represents the amount of money remaining after all operating expenses have been deducted from gross income by government.  A three sector closed economy model is constructed by adding government sector to the two sector closed economy which consist of household and business sector and there is no international trade. Analysis of steady state in Mankiw Romer Weil economic growth model with role of government influence can be obtained one equilibrium point for human and physic capital per effective labor. Then,this model are analyzed to determine the stability of the equilibrium point. The stability of the equilibrium point criteria is based on eigenvalues from Jacobian matrix and we show that eigenvalues of Jacobian matrix are real, distinct and negative so the equilibrium point is asymptotically stable. Keywords :
SIFAT-SIFAT QUASI-IDEAL-Γ PADA SEMIGRUP-Γ Stephani Diah
Jurnal Matematika Vol 1, No 1 (2012): jurnal matematika
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (422.842 KB)

Abstract

Semigrup-Г S merupakan generalisasi dari semigrup. Semigrup- Г S adalah semigrup yang memuat pemetaan S×Г×S→S , yaitu (a ,γ,b) ↦aγb∈S dan memenuhi aγbμc=aγbμc untuk semua a,b,c∈S dan γ,μ∈Г . Quasi-ideal- Г Q dimana Q merupakan himpunan bagian tak kosong dari semigrup- Г S disebut quasi-ideal-Г Q jika SГQ∩QГS⊆Q . Irisan dari semua quasi-ideal-Г Q yang memuat A dengan A merupakan himpunan bagian dari semigrup- Г S , sehingga quasi-ideal- Г Q merupakan quasi-ideal-Г Q terkecil yang memuat A .
ANALISIS HUBUNGAN ANTARA PERSAMAAN RICCATI DAN PERSAMAAN INTEGRAL VOLTERRA TIPE DUA AnasKhairur Rijal Rijal; djuwandi djuwandi
Jurnal Matematika Vol 3, No 4 (2014): JURNAL MATEMATIKA
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (211.721 KB)

Abstract

In this paper, a method for finding solution of the Riccati equation is introduced. The Riccatiequation is the first order inhomogeneous nonlinear ordinary differential equation (ODE) that can always be transformed into a second order homogeneous linear ODE. Since, every initial value problem (IVP) of the second order linear ODEs can be transformed into a Volterra integral equation (IE) of the second type, evaluate this equation by approximate technique by means, the approximate solution of the Riccati equation can be found. The approximate technique of the Voterra IE has been describe before, is based on the Taylor series expansion and it’s modification of the method. Behind the Cramer’s rule, an approximate solution of the 2nd type Volterra IE is easily can be determine and so, the approximate solution of the Riccati equation can be found. Test example is given to get conclusion about accuracy of the method.
BILANGAN DOMINASI EKSENTRIK TERHUBUNG pada GRAF Tito Sumarsono
Jurnal Matematika JURNAL MATEMATIKA NO 4 2016
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (432.638 KB)

Abstract

  ABSTRACT. Given a graph  , comprising a set   of vertices and a set   of edges. A set   is a dominating set of , if every vertex in  is adjacent to at least one vertex in . The cardinality of minimum dominating set of  it’s domination number and is denoted by . A set  is a eccentric dominating set if  is an dominating set of  and for every  in  there exist at least one eccentric point of  in . The cardinality of minimum eccentric dominating set of  it’s eccentric domination number and is denoted by . A set  is a connected eccentric dominating set if  is an eccentric dominating set of  and the induced subgraph  is connected. The cardinality of minimum connected eccentric dominating set of  it’s connected eccentric domination number and is denoted by . In this paper we discuss connected eccentric dominating set and connected eccentric domination number on special graphs which are complete graph, star graph, complete bipartite graph, cycel graph and wheel graph.  Keywords : eccentric dominating set, eccentric domination number, connected   eccentric dominating set, connected eccentric domination number
GENERALISASI INVERS SUATU MATRIKS YANG MEMENUHI PERSAMAAN PENROSE ImronArdi Gunawan; Solichin Zaki
Jurnal Matematika Vol 1, No 1 (2012): jurnal matematika
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (324.245 KB)

Abstract

Generalized inverse is an extension of the concept of inverse matrix. One type of generalized inverse of a matrix of size (m × n) with elements of the complex number is the Moore Penrose inverse is denoted by A+ . Moore Penrose inverse is the inverse of the matrix which must satisfy the four equations called Penrose equations. Generalized Inverse whereas only satisfy some (not all) of the four Penrose equations are divided into classes based on the number of equations that can be met Penrose, {1}-inverse, {1,2}-inverse, {1,2.3}-inverse, dan {1,2,4}-inverse.

Page 6 of 10 | Total Record : 97