Djuwandi Djuwandi
Unknown Affiliation

Published : 11 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 11 Documents
Search

MODEL ECONOMIC PRODUCTION QUANTITY (EPQ) UNTUK PERENCANAAN TERKOORDINASI PADA PRODUK DENGAN BACKORDER PARSIAL DAN KOMPONENNYA Oktavia, Ayu; Djuwandi, Djuwandi; Khabibah, Siti
MATEMATIKA Vol 20, No 1 (2017): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1023.977 KB)

Abstract

Economic Production Quantity (EPQ) used to determined policy and oversee inventory levels. This article discussed on EPQ models for  planed of product with partial backordered and its component. The final product is assummed have m component and coordinated planning used to coordinate component of product and final product which is the components used for basic EPQ models and for final product planned using partial backorder EPQ. Numerical simulation given based  data on UD. Adi Mulya.
METODE URUTAN PARSIAL UNTUK MENYELESAIKAN MASALAH PROGRAM LINIER FUZZY TIDAK PENUH Jiwangga, Sesar Sukma; Irawanto, Bambang; Djuwandi, Djuwandi
MATEMATIKA Vol 20, No 1 (2017): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1504.216 KB)

Abstract

Not fully fuzzylinear programming problem have two shapes of objecyive function. that is triangular fuzzy number and trapezoidal fuzzy number. The decision variables and constants right segment only has a triangular fuzzy number. Partial order method can be used to solve not fully fuzzy linear programming problem with decision variables and constants right segment are triangular fuzzy number. The crisp optimal objective function value generated from the partial order method.
HIMPUNAN SEMI BUKA DALAM RUANG TOPOLOGI Djuwandi, Djuwandi
MATEMATIKA Vol 13, No 2 (2010): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (13.424 KB)

Abstract

For study this paper we required about topological space, in particular the topology on the real numbers, while for assessing semi-open set are expected to know about an open set, closed set, closure (closure) set, interior sets, etc.
BILANGAN DOMINASI DAN BILANGAN KEBEBASAN GRAF BIPARTIT KUBIK Santoso, Budi; Djuwandi, Djuwandi; S.U, Robertus Heri
MATEMATIKA Vol 15, No 1 (2012): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4203.252 KB)

Abstract

Let a graph , is a pair of sets V vertices and set E edges. Let  be a subset of . If each vertex of  is adjacent to atleast one vertex of , then  is called a dominating set in . The domination number of a graph  denoted as  is the minimum cardinality of a dominating set in . A set of vertices in a graph is said to be an independent set if no two vertices in the set are adjacent. the number of vertices in the largest independent set of a graph  is called the independence number and denoted by . In this final project, we consider the relation between independent set and dominating set of finite simple graphs. In particular, discuss them for some cubic bipartite graphs and find that the domination number is less than  of the number of vertices and independence number  is half of the number of vertices.  
MODEL DINAMIKA PENYEBARAN DBD DENGAN MENERAPKAN TIGA STRATEGI PENGENDALIANNYA ., Kartono; Djuwandi, Djuwandi; ., Farikhin
MATEMATIKA Vol 17, No 1 (2014): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (46.225 KB)

Abstract

The information of the dynamic of dengue fever is needed to build the model of its controlling strategy. Therefore, this research is aimed to develop a mathematical model such that the effectiveness of several controlling strategy for example 3M campaign, treatment to the infected people, andthe applying ofinsecticide can be evaluated. This mathematical model is constructed by classifying the human population into three class that are Suspectible (S), Infected (I) and Removed (R) while the vector population (aedes aegypti mosquito) is assumed belongs to the Infected (I) class. The effectiveness of the controlling strategy is analyzed using maximum Pontryagin principle. The result of this analysis shows that the 3M campaign affects the size of the suspect population.
SOLUSI MASALAH TRANSPORTASI MENGGUNAKAN TOCM-SUM APPROACH DENGAN INDIKATOR DISTRIBUSI Astuti, Nita Dwi; Utomo, Robertus Heri Soelistyo; Djuwandi, Djuwandi
MATEMATIKA Vol 19, No 3 (2016): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (237.731 KB)

Abstract

Transportation problems are related to the transport of a product from some sources to a number of different destination. In general, the different delivery will produce different shipping cost, therefore the purpose of solving classic transportation problems with the allocation of delivery from the source to destination is to determine the minimum transportation costs. The appropriate allocating in each case will produce an optimal solution for both minimize case and maximize case. TOCM-SUM approach with the indicator distribution is a new method for seeking initial feasible solution of the transportation problem. This method was proposed by Aminur Rahman Khan, Adrian Vilcu, MD.Sharif Uddin and FlorinaUngureanu. The first step is create a table of transportation, the second step is reduce the elements in each row and column with the smallest elements in every row and column, the third case is form the tables of Total Opportunity Cost Matrix (TOCM), the fourth case is calculate the indicators of distribution of each row and column in the TOCM table, and thereafter, the allocation is given to the cell that has the minimum distribution indicator. Repeat the steps until the total allocation of supply and demand is met, for optimal solutions the method of Stepping Stone is being used. This article discusses the application of TOCM-SUM Approach with the indicator distribution – Stepping Stone in the CV. Tirta Makmur Ungaran.    
PELABELAN AKAR RATA-RATA KUADRAT PADA GRAF LADDER〖 L〗_n DAN GRAF CORONA〖 P〗_n⨀K_2 Mubarok, Azhar; Ratnasari, Lucia; Djuwandi, Djuwandi
MATEMATIKA Vol 19, No 2 (2016): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (163.028 KB)

Abstract

A graph G with p vertices and q edges. A Root Square Mean Labeling of graph  is an injective function from the set of vertices  to the set  with  edge is the number of side on the graph such that when each edges  is labeled by a function that defines as  ceilling function or floor function from root square mean  and , then the edge labels are distinct. For each of graphs that uses root square mean labeling is called as Root Square Mean graph. In this paper, the study is about root square mean labeling on Ladder graph, Corona graph . Then, we prove that  and  graph  are included as the root square mean graph. 
METODE SIMPLEKS PRIMAL-DUAL PADA PROGRAM LINIER FUZZY PENUH DENGAN BILANGAN TRAPEZOIDAL Irawanto, Bambang; Djuwandi, Djuwandi; Suryoto, Suryoto; Handayani, Rizky
MATEMATIKA Vol 19, No 3 (2016): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (198.268 KB)

Abstract

Program linier dengan koefisien fungsi tujuan bilangan trapezoidal fuzzy (FNLP) dan program linier dengan variabel trapezoidal fuzzy (FVLP) merupakan bentuk dari program linier fuzzy tidak penuh. FNLP memiliki bentuk bilangan trapezoidal fuzzy hanya pada koefisien fungsi tujuannya saja, sedangkan FVLP memiliki bentuk bilangan trapezoidal fuzzy pada variabel keputusan dan konstanta ruas kanannya. Kasus minimasi dari FNLP dan FVLP dapat diselesaikan dengan metode simpleks dual. Bentuk bilangan trapezoidal fuzzy harus diubah ke bentuk bilangan crisp terlebih dahulu dengan menggunakan fungsi peringkat untuk menentukan entering variable dan leaving variablenya.Nilai fungsi tujuan optimalyang dihasilkan berupa bilangan trapezoidal fuzzy dan bilangan crisp.
HIMPUNAN SEMI KONTINU DALAM RUANG TOPOLOGI Djuwandi, Djuwandi
MATEMATIKA Vol 14, No 2 (2011): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (24.452 KB)

Abstract

It should be noted to understand some material about the topology of real number, continuous function in topological spaces, open function, closed function in topological spaces. For semi-continous function expected to understand the concept of semi-open sets in topological spaces.
HUBUNGAN BENTUK-BENTUK KHUSUS K-ALJABAR HIPER IMPLIKATIF Ratna Kusuma Ayu; Djuwandi Djuwandi
Jurnal Matematika Vol 2, No 1 (2013): JURNAL MATEMATIKA
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (564.468 KB)

Abstract

ABSTRAK.Setiap K-aljabar hiper dapat dipandang sebagai BCK-aljabar dimana peran operasi biner pada BCK-aljabar diambil alih oleh operasi hiper yang berlaku pada K-aljabar hiper. Operasi hiper merupakan pemetaaan dari himpunan ke keluarga himpunan sehingga operasi hiper yang berlaku pada K-aljabar merupakan generalisasi dari operasi biner yang berlaku pada BCK-aljabar. Dalam Tugas Akhir ini, akan dijelaskan Definition-Definition dan teorema-teorema dalam K-aljabar hiper, K-aljabar hiper implikatif, K-aljabar hiper implikatif kuat dan K-aljabar hiper implikatif lemah serta hubungan antara ketiganya.Kata kunci : K-aljabar hiper, K-ideal hiper, K-aljabar hiper implikatif lemah, K-aljabar hiper implikatif kuat.