cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Inersia : Jurnal Teknik Sipil dan Arsitektur
ISSN : 0216762X     EISSN : 2528388X     DOI : -
Core Subject : Engineering,
INERSIA is stand for INformasi dan Ekspose hasil Riset Teknik SIpil dan Arsitektur. This scientific journal is managed by the Department of Civil Engineering and Planning Education, Faculty of Engineering, Yogyakarta State University, in cooperation with the Persatuan Insinyur Indonesia (PII). It publishes and disseminates research results from lecturers and post graduate students from various universities in Indonesia, which has contributed to the development of science and technology, especially in the field of Civil Engineering and Architecture. INERSIA is published twice a year, in May and December.
Arjuna Subject : -
Articles 312 Documents
Bridge Maintenance Strategy: Application of Bridge Condition Index (BCI) UK to Ngawi Kertasono Toll Road Bridge Sari, Halima Irianti Puspita; Siswosukarto, Suprapto; Aminullah, Akhmad
INERSIA lnformasi dan Ekspose Hasil Riset Teknik Sipil dan Arsitektur Vol. 20 No. 2 (2024): December
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/inersia.v20i2.70211

Abstract

In the context of toll road infrastructure, bridges are essential for connecting two distinct sections and ensure the toll road functioning properly. Therefore, to accomplish that objective and, at the same time, optimize the allocation of limited funds for maintenance, bridges require a proper maintenance priority strategy. However, in Indonesia's Bridge Management System (BMS), the importance weight of the bridge elements has not yet been used and the final result still causes bias while assembling the rankings of handling priorities. The Bridge Condition Index (BCI), developed in the United Kingdom, offers a bridge handling priority system that is determined by the importance of each bridge element. To determine the effectiveness of the BCI UK method, an analysis was carried out using the results of a visual inspection of five river bridges located on the Ngawi Kertasono toll road. According to the handling ranking result, Kedungrejo Bridge appears to be on the first rank with the dominant defect occurred on the pier element. Sukoharjo Bridge, on the other hand, has the dominant defect happened in the carriageway surfacing and is ranked last. The outcomes itself indicate that bridges with defects in critical elements, which can affect the structural stability of the bridge, will be prioritized to be repaired prior to bridges with non-structural element damages. Moreover, suitable repair recommendations can be made based on the type and severity of the damage itself. Furthermore, this result is expected to be taken into account while developing the Indonesian bridge management system in the future.
Mix Design of Ambient Cured Geopolymer Concrete with Fly Ash, GGBFS, and Borax Hanani, Eklisia; Satyarno, Iman; Sulistyo, Djoko
INERSIA lnformasi dan Ekspose Hasil Riset Teknik Sipil dan Arsitektur Vol. 20 No. 2 (2024): December
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/inersia.v20i2.74464

Abstract

Geopolymer cement, using fly ash (FA), presents a viable alternative to Portland cement. However, FA-based geopolymers often lack reactivity and strength, necessitating combination with calcium-rich materials like ground granulated blast furnace slag (GGBFS). However, GGBFS could accelerate setting and decrease workability, requiring a retarder. Borax is recognized for its retarding properties in FA-based geopolymers, but its impact in FA-GGBFS systems remains understudied. This study evaluated the influence of varying proportions of FA and GGBFS with the addition of borax, on the setting time, workability, and mechanical strength of the geopolymer paste, mortar, and concrete under ambient curing conditions. Setting time test was conducted for the geopolymer paste, flow table test for workability assessment of mortar, and compressive strength testing at 1, 7, and 28 days for the mechanical strength of paste and concrete. Various FA:GGBFS ratios (100:0, 70:30, 50:50, and 0:100) were examined. Alkali activator consists of NaOH and Na2SO3 with Na2SO3/NaOH ratio (R) of 1.5 and alkali to precursors ratio (A) of 0.45 was used. Borax was added at a constant 3% by weight of the precursors. Both the volume ratios of paste to fine aggregate voids (Rm) and mortar to coarse aggregate voids (Rb) were set to 1.5. Borax increased initial setting time by 7-33 minutes for FA-GGBFS geopolymer. GGBFS replacement decreased the workability of mortar, with flow index ranging from 83-158%. Increasing GGBFS content significantly improved compressive strength in both paste and concrete samples. Notably, 100% GGBFS replacement yielded the highest concrete strength at 74.86 MPa after 28 days. However, the optimal balance of properties was achieved with a 50% GGBFS replacement, resulting in satisfactory strengths of 100.29 MPa for paste and 69.08 MPa for concrete, along with a 40-minute initial setting time and a flow index of 138%. These findings surpass prior studies on similar geopolymers.
Effects of Gap on Erosion Surrounding Culvert Joints - An Experimental Study Kuswari, Sari; Hardiyatmo, Hary Christady; Fathani, Teuku Faisal
INERSIA lnformasi dan Ekspose Hasil Riset Teknik Sipil dan Arsitektur Vol. 20 No. 2 (2024): December
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/inersia.v20i2.72119

Abstract

Culvert is one of the drainage systems designed to transport water from one place to another place. Soil erosion can occur due to gaps in the joints of culverts, leading to phenomena such as piping, backward erosion, and suffusion caused by water discharge. When water flows through a gap culvert joint, it makes the soil around it fluid, which can result in sand boiling, and eventually, the formation of sinkholes. Water entrains soil particles, reducing soil density around the culvert, forming voids that expand with erosion. A laboratory-based study investigated gaps in culvert joints, and found that water flow velocity and duration significantly influence soil erosion. Water flow transports eroded materials into culverts, with most soil particles settling around the joints. The gaps of culvert joints can impact erosion, with larger gaps leading to greater influx of soil particles into the culvert. Longer flow durations also result in greater erosion, as fluidization of the soil leads to increased erosion. On the other hand, larger lengths of culvert joints result in reduced erosion. Soil accumulation along the culvert joints cover and clogging contribute to this phenomenon. Culverts lacking joints cover suffer significant erosion, with soil particles entering the culvert. Sedimentary material is predominantly found within the culvert rather than being carried out by the flow. Additionally, the size of eroded soil particles affects the width of the gaps, typically ranging from 0.25 - 0.4 mm. The erosion phenomenon that occurs around culvert joints can lead to long-term effects.
The Impact of Developing Amenities and Corridor Infrastructure in the Borobudur Area on Landscape Visual Quality Almira, Nisrina Salsabila; Setiawan, Bakti
INERSIA lnformasi dan Ekspose Hasil Riset Teknik Sipil dan Arsitektur Vol. 20 No. 2 (2024): December
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/inersia.v20i2.72466

Abstract

The Borobudur area, a priority tourism destination in Indonesia, is renowned for its rich historical and cultural significance. To enhance its appeal and improve the tourist experience, the government has been developing infrastructure and tourism amenities along the Borobudur area corridor, with significant advancements observed in the Palbapang-Borobudur corridor. This study employs the Scenic Beauty Estimation (SBE) method, a quantitative approach designed to evaluate landscape visual quality through tourists' perceptions. A survey of 60 tourists was conducted along the Palbapang-Borobudur corridor to assess the impact of these developments. The findings reveal that the development of amenities and infrastructure enhances the visual quality, particularly in the first segment at the Palbapang Lion Gate, characterized by scenic views of the Menoreh mountains and well-integrated vegetation. Landscape elements such as terraced buildings, natural vegetation, and harmonious design contribute positively to visual perception. In contrast, segments 2, 3, and 4 score lower due to mismatched building types, colors, and the presence of visually disruptive billboards. This study highlights the need for integrated planning and management to balance tourism development with the preservation of cultural and natural landscapes. The use of the SBE method provides a novel framework for assessing visual quality in heritage areas, offering valuable insights for sustainable tourism planning in similar contexts.
Experimental Study of Cable Force Measurement on Cable-Stayed Bridges Based on Vibration Method Aisyah, Aisyah; Suhendro, Bambang; Aminullah, Akhmad
INERSIA lnformasi dan Ekspose Hasil Riset Teknik Sipil dan Arsitektur Vol. 20 No. 2 (2024): December
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/inersia.v20i2.67731

Abstract

This study investigates cable force estimation in cable-stayed bridges through a vibration-based approach, utilizing experimental data measured using an accelerometer sensor. In the initial phase of the research, the frequency data measured by accelerometers is validated through numerical modeling using the Midas Civil software. Additionally, besides employing the string formula, this study adopts formulas proposed by [1] to predict cable forces in two cable-stayed bridges in Indonesia. The estimated cable forces using both formulas are then compared with the actual cable forces measured during the lift-off test.The analysis results indicate that most of the cable frequency data is valid, with differences of less than 7% between the measured frequencies and numerical results. However, a significant difference is observed in one cable, BA-M11, with differences of up to 50.9%. This suggests that the mode order and frequency values measured for this cable are not valid. Through a numerical approach, accurate mode orders and frequencies are determined, enabling confident use of the measurement data for cable force estimation in the case of cable BA-M11.Furthermore, when the validated mode orders and frequency values are used with both the string formula and Yu's proposed formulas, the results show that Yu's formulas tend to provide more accurate estimations compared to the string theory, with average differences in cable force estimation of approximately 4.33% and 2.97% relative to the lift-off force.The contribution of this research lies in the utilization of numerical verification to correct inaccuracies in accelerometer-measured mode orders and frequency values. Subsequently, armed with validated mode orders and frequency values, Yu's proposed formulas demonstrate superior accuracy in predicting cable forces compared to the string theory when both are compared with lift-off test data.
Effect of Parametric Soil Nailing under Seismic Behavior Ramayanti, Anggie; Faris, Fikri; Hardiyatmo, Hary Christady
INERSIA lnformasi dan Ekspose Hasil Riset Teknik Sipil dan Arsitektur Vol. 20 No. 2 (2024): December
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/inersia.v20i2.74144

Abstract

The Wonogiri region has hilly contours that make the area vulnerable to slope failure. Treatment of slope failure can be done by several methods, such as geometry changes, controlling drainage and creating structures for stability such as soil nailing. Soil nailing has proven useful as a slope reinforcement with several advantages such as low cost and fast implementation. This study aims to see the effect of the parametric behavior of soil nailing on the displacement and axial force of the nail bar under earthquake conditions. First, soil nails are modeled in the finite element method with variations in length, horizontal distance, and vertical distance between nails by applying pseudo-static load based on the history of the largest earthquake that have occurred at the research location, then displacement and axial forces on the nail bar are checked. The modeling shown that increasing the length increases the safety factor, reduces the displacement of the soil nailing wall, and reduces the axial force on the nail bar, as it increases the length of the nail behind the landslide plane and increases the friction between the nail and the soil which resists excessive displacement of the soil surface. Meanwhile, increasing the horizontal and vertical spacing reduces the safety factor, increases the displacement of the soil nailing wall, and reduces the axial force on the nail bar, due to the increased friction between the nail and the soil. Vertical nail spacing variation has more effect on safety factor, displacement, and axial force than horizontal nail spacing variation.
Mix Design of Geopolymer No-fines Concrete with Fly Ash and Ground Granulated Blast Furnace Slag Yuhasnita, Angeline; Siswosukarto, Suprapto; Satyarno, Iman
INERSIA lnformasi dan Ekspose Hasil Riset Teknik Sipil dan Arsitektur Vol. 20 No. 2 (2024): December
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/inersia.v20i2.74239

Abstract

The use of geopolymers as a cement replacement in no-fines concrete can be a solution to address the impact of cement production on global warming. The absence of standardized mix designs for geopolymer paste poses a challenge, particularly concerning workability in no-fines geopolymer concrete mixes, where insufficient workability can hinder compacting, while excessive workability may cause segregation. Additionally, geopolymer often exhibits a quick hardening time, necessitating the use of retarders such as borax. This study aims to evaluate the impact of varying the ratio of alkali activator to cementitious material (A) at 0.25, 0.30, and 0.35, with the addition of borax (C) at 3% and 5%, on the flow and hardening time of geopolymer paste. Additionally, the study aims to investigate the effect of the cement-to-aggregate volume ratio (P) on geopolymer no-fines concrete properties, particularly compressive strength and unit weight. In no-fines geopolymer concrete formulation, the absolute volume of geopolymer paste is equivalent to the volume of cement paste with a 0.4 water-to-cement (w/c) ratio, with a cement-to-aggregate volume ratio of 1:4 and 1:6. The geopolymer mixture consists of fly ash and GGBFS in a 50:50 ratio. The geopolymer activator consist of NaOH (10 M) and Na2SiO3 in a SS/SH (R) ratio of 2. The research results indicate that reducing the A ratio from 0.35 to 0.25 decreases flow and accelerates the hardening time of the geopolymer paste. Increasing the borax (C) content from 3% to 5% can prolong the hardening time and reduce flow (from 20.25 to 19.25 cm at an A ratio of 0.30). The test results of geopolymer no-fines concrete properties that increasing the volume ratio (P) from 1:4 to 1:6 can reduce the compressive strength from 30.95 to 13.27 MPa and the unit weight from 2158.83 to 1843.38 kg/m³ at (A) 0.35. However, in the concrete samples at this ratio, some voids were covered by paste. Therefore, it is recommended to use ratio (A) 0.30.
The Influence of Cement Type on Seawater-Affected Concrete Impermeability Arianto, Niky; Saputra, Ashar; Siswosukarto, Suprapto
INERSIA lnformasi dan Ekspose Hasil Riset Teknik Sipil dan Arsitektur Vol. 20 No. 2 (2024): December
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/inersia.v20i2.75738

Abstract

The impermeability of concrete exposed to seawater is key in maintaining long-term structural integrity. In an exposed environment, concrete must be able to protect itself from seawater penetration which can potentially cause damage, corrosion and material degradation. This study aims to investigate the effect of different types of cement on the impermeability of concrete using Ground Granulated Blast-furnace (GGBFS) as concrete filler based on gradation to obtain dense concrete, especially when exposed to seawater during the maintenance period with age variations of 7, 28, and 56 days. Three types of cement available in the general public were used, namely, type V, Portland Composite Cement (PCC), Portland Pozzolan Cement (PPC). The research method used was experimental testing with 6 variations with the dimensions of a cylinder measuring 15x15x30 cm 3 and a cube measuring 15x15x15 cm3. The results obtained in the form of compressive strength test with the highest elastic modulus is cement type V GGBFS of 48.12 MPa with elastic modulus 38153.21 MPa while the smallest is Portland Pozzolan Cement (PPC) 35.93 MPa and 26339.61 MPa for elastic modulus. In this study, concrete mixes with Ground Granulated Blast Furnace Slag (GGBFS) showed a significant increase in compressive strength over time, despite initially having lower strength than regular cement mixes. The use of GGBFS in concrete offers long-term benefits, with the potential to achieve higher compressive strengths. This study demonstrates the importance of considering treatment time and the use of GGBFS in designing more durable and robust concrete mixes.
Improving the Integration of Intermodal Transportation Services in the Poris Plawad Area in Tangerang City Yusuf, Ferdinan; Priyanto, Sigit; Mulyono, Agus Taufik
INERSIA lnformasi dan Ekspose Hasil Riset Teknik Sipil dan Arsitektur Vol. 21 No. 1 (2025): May
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/inersia.v21i1.64151

Abstract

The integration of intermodal transportation services is a strategic necessity for improving the quality of urban transportation services. To realize the integration of services, it should be focused on the main transportation nodes in an area, such as Poris Plawad Terminal and Batu Ceper Station in the Poris Plawad Area, Tangerang City. This study aims to evaluate and determine strategies for improving the integration of intermodal transportation services in the Poris Plawad Area. The results of this study are expected to provide consideration for stakeholders to encourage the use of public transportation and realize the successful development of the Poris Plawad Area in the future. The sampling technique used was purposive sampling, with a total sample size of 202 respondents. Respondent data collection was carried out by distributing questionnaires to users of transportation services at Poris Plawad Terminal and Batu Ceper Station, as well as residents who are active within a radius of 800 meters from the terminal and station. This research uses the Importance Performance Analysis (IPA) and Theory of Inventive Problem Solving (TRIZ) methods. The results of the IPA analysis show that there are five service variables that are considered important but low-performing, so they need to be prioritized for improvement, including the provision of pedestrian crossing facilities, the provision of proper sidewalks, disturbance-free pavement quality, and access into and out of the node that is free from traffic conflicts. Recommended solutions based on TRIZ principles include building a sky bridge and closing the south entrance for access into and out of the station; building a sidewalk connected to the node that is built higher than the road surface and uses high-quality materials; placing sidewalk bollards; and permanently closing the station access point that passes through the railway level crossing. These improvements are expected to enhance accessibility, safety, and walkability, encouraging greater public transport use and aligning with the area’s Transit Oriented Development goals.
Impact Analysis of Condongcatur Underpass Development Plan with Macro Traffic Simulation PTV VISUM on Road Network Performance Yusup, Muhamad; Munawar, Ahmad; Irawan, Muhammad Zhudy
INERSIA lnformasi dan Ekspose Hasil Riset Teknik Sipil dan Arsitektur Vol. 21 No. 1 (2025): May
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/inersia.v21i1.64292

Abstract

It is planned to build an Underpass for the Condongcatur intersection to improve traffic performance and overcome the congestion that occurs. The purpose of this research is to analyze the existing traffic performance around the Condongcatur Underpass construction area, predict the impact caused, and formulate efforts to handle traffic impacts and analyze how effective the construction of the Condongcatur Underpass is in overcoming congestion that occurs. This research uses a transportation model approach to analyze the road network using PTV VISUM software. The results of the research on existing conditions show the performance of the affected road network with a v/c ratio value between 0.21 - 1, 23 (Level of service B - F). At the time of construction there were 12 road sections most affected by the Condongcatur Underpass construction plan, where the road section with the highest percentage increase occurred on the Padjajaran road section by 167% which was originally in service category C to F. In operational conditions, the Padjajaran Road section with the Underpass is in the B and C service level categories. The performance results on the affected road network provide better results with the Underpass compared to the existing conditions.