cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Bahan Alam Terbarukan
ISSN : 23030623     EISSN : 24072370     DOI : -
Core Subject : Science,
This journal presents articles and information on research, development and applications in biomass conversion processes (thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion) and equipment to produce fuels, power, heat, and value-added chemicals from biomass. A biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstock. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol (see also alcohol fuel). The high-value products increase profitability, the high-volume fuel helps meet energy needs, and the power production helps to lower energy costs and reduce greenhouse gas emissions from traditional power plant facilities. Future biorefineries may play a major role in producing chemicals and materials that are traditionally produced from petroleum.
Arjuna Subject : -
Articles 426 Documents
GLYPTAL SYNTHESIS FROM GLYCEROL AND PHTHALIC ANHYDRIDE USING ACTIVATED ZEOLITE AS HETEROGENEOUS CATALYST AND ITS COMPARISON TO HOMOGENEOUS p-TOLUENESULFONIC ACID CATALYST Budhijanto, Budhijanto; Wirata, Deddy; Kurniawan, Kurniawan
Jurnal Bahan Alam Terbarukan Vol 6, No 2 (2017): December 2017 [Nationally Accredited]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v6i2.12065

Abstract

The abundance of glycerol as the side product of biodiesel has motivated researches on glycerol utilization as a feedstock for more valuable products. This research presents the possibility of producing polyester (glyptal), which is a widely used coating material, from glycerol by esterification using phthalic anhydride. Esterification reaction of phthalic anhydride and glycerol to produce glyptal can be catalyzed by Lewis acid provided by either homogeneous or heterogeneous catalyst. This study compared the performance of activated zeolite as heterogeneous catalyst in the esterification of glycerol and phthalic anhydride with the performance of p-toluenesulfonic acid (PTSA) as homogeneous catalyst. The reactions were carried out in laboratory scale batch reactor. The kinetics was modeled using Step Growth Polymerization Model. The rate constant obtained from experimental data fitting on the model was correlated with temperature by Arrhenius equation. Both activated zeolite and PTSA exhibited Arrhenius behavior. Based on the comparison of the Arrhenius constants of the reaction catalyzed by each of the two different catalysts, PTSA performed better in term of lower activation energy. Nevertheless, this result did not suggest that activated zeolite was failed. The activated zeolite was successful to make the reaction happen. To reach the same performance as the homogeneous PTSA, the activated zeolite needs to be improved with respect to its cation exchange capacity and also the operational consideration such as the amount of zeolite added per volume of reaction and the intensity of mixing to minimize the diffusion resistance surrounding the zeolite particles.
PERFORMANCE ANALYSIS OF 4-OUTLETS SPRAY AERATOR FOR PROCESSING OF INDIGOFERA LEAVES (Indigofera Tinctoria Linn) BECOMES NATURAL DYE SUBSTANCES Sukadana, Ida Bagus Putu; Rajendra, I Made; Arsani, Ida Ayu Anom; Suastawa, I Wayan
Jurnal Bahan Alam Terbarukan Vol 6, No 2 (2017): December 2017 [Nationally Accredited]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v6i2.8045

Abstract

The commonly known natural dye substance processing for traditional clothes, such as batik and tenun (woven cloth) is fermentation. The fermentation process can specifically be continued with extraction to produce indigo paste. The process can be done mechanically, i.e. by stirring process, and chemically. In order to accelerate the production, manual process of aeration can be substituted with jet-spray aerator. The aerator prototype which has been developed is acrylic aerator tube with diameter of 240 mm and thickness of 5 mm. The tube was made 1 m long to provide with a sufficient space for indigo foam. Its bottom part is completed with spiral air hose having five small holes of 0.2, 0.4, and 0.6 mm diameter uniformly located along the height of solution in the tube. The aerator was designed for the 10 litters of fermentation solution of 1 kilogram indigofera leaves. Based on the mass of indigo paste produced, the optimum working condition of the aerator is achieved on 3.8 m/sec air velocity and supply pressure of 2 bar with duration of 60 minutes. The aeration test indicated operational characteristic was quite good, i.e. Oxygen Transfer Rate (OTR) of 3.6 kg/hour, Aeration Efficiency (AE) of 4.8 kg/kWh and factual Oxygen Transfer Efficiency (OTE) of 44%.
PENINGKATAN KADAR GERANIOL DALAM MINYAK SEREH WANGI DAN APLIKASINYA SEBAGAI BIO ADDITIVE GASOLINE Astuti, Widi; Putra, Nur Nalindra
Jurnal Bahan Alam Terbarukan Vol 3, No 1 (2014): June 2014
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v3i1.3098

Abstract

Sereh wangi merupakan salah satu tanaman penghasil minyak atsiri yang banyak mengandung geraniol. Geraniol merupakan senyawa penyedia oksigen sehingga minyak sereh wangi dimungkinkan dapat digunakan sebagai bio additive gasoline. Penelitian ini bertujuan  meningkatkan kadar geraniol dalam minyak sereh wangi dan menggunakannya sebagai bio additive gasoline.Penelitian dilakukan dalam  tiga tahap, yaitu  pemungutan minyak sereh wangi dari daun sereh wangi, peningkatan kadar geraniol dalam minyak sereh wangi dan aplikasi minyak sereh wangi yang mengandung geraniol tinggi sebagai bio aditive gasoline.Hasil penelitian menunjukkan bahwa pemungutan minyak sereh wangi yang dilakukan dengan metode distilasi uap menghasilkan rendemen sebesar 0,76% dengan kadar geraniol 5,36%.Kadar geraniol dapat ditingkatkan menjadi 21,78% melalui proses distilasi vakum pada suhu 120oC. Pengujian minyak sereh wangi dengan kadar geraniol tinggi sebagai bio additive gasoline meliputi uji performa dan efisiensi konsumsi bahan bakar dengan variasi perbandingan volume gasoline dengan bio additive. Hasilnya, penambahan minyak sereh wangi dengan perbandingan volume gasoline ; minyak sereh wangi = 1000:2 mampu meningkatkan power mesin dari 7,8HP menjadi 8,6HP. Sementara, pada pengujian efisiensi bahan bakar, penambahan minyak sereh wangi dengan perbandingan volume gasoline : minyak sereh wangi = 1000:2 dapat meningkatkan efisiensi mesin sebesar 10,8%. Citronella contains geraniol which is an oxygen provider substances, so it may be used as bio additive. The purpose of this research  is to increase geraniol content in citronella oil and use it as a gasoline bio additive. This research is conducted  in three steps including take the citronella oil from citronella leaf, increase geraniol content in citronella oil and use citronella oil as a gasoline bio additive. The result show that citronella oil produced from citronella leaf using vapor distillation method contains geraniol by 5.36%. The content can be increase using vacuum distillation  up to 21.78 % at temperature of 120oC. The citronella oil test as a gasoline bio additive including  performance test and fuel efficiency test with gasoline-bio additive ratio as variable. The addition of citronella oil to gasoline with the volume ratio of gasoline : citronella oil = 1000:2  increases machine power from 7.8 HP to 8.6 HP and fuel efficiency up to 10.8 %.
Conversion of Biomass of Bagasse to Syngas Through Downdraft Gasification Maryudi, Maryudi; Aktawan, Agus; Salamah, Siti
Jurnal Bahan Alam Terbarukan Vol 7, No 1 (2018): June 2018 [Nationally Accredited]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v7i1.11621

Abstract

National energy demand has been fulfilled by non-renewable energy sources, such as natural gas, petroleum, coal and so on. However, non-renewable energy reserves deplete increasingly which can cause an energy crisis. Conversion of biomass into energy becomes one of the solutions to overcome it. Indonesia has an enormous biomass potential especially from sugarcane plantation. Sugarcane plantations produce waste of bagasse abundantly. Commonly bagasse is utilized as energy source by conventional combustion.  This research studies the utilization of bagasse as energy source by gasification technology to produce gas fuel. The gasification model used in this research is downdraft gasifier equipped with cyclone to separate gas with solid or liquid gasification products. The result has shown  that gasification of bagasse has produced flammable syngas. The increase of bagasse weight increases the amount of syngas of gasification process. Carbon monoxide is the greatest content of syngas, while a few amount of H2, CH4 are also detected. Bagasse through gasification process is very potential source of alternative energy, since it is derived from waste and a cheap material.
KULTIVASI SPIRULINA PLATENSIS PADA MEDIA BERNUTRISI LIMBAH CAIR TAHU DAN SINTETIK Syaichurrozi, Iqbal; Jayanudin, Jayanudin
Jurnal Bahan Alam Terbarukan Vol 5, No 2 (2016): December 2016 [Nationally Accredited]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v5i2.7398

Abstract

This research was conducted to study the effect of various additions of synthetic nutrient into Spirulina platensis growth medium containing tofu wastewater 8%v/v. Synthetic nutrient was varied at 50, 75, 100%. Based on abservation, the OD680 (Optical Density at 680 nm) increased until in the end of cultivation time with final OD680 of 0.381, 0.392, 0.189 for variable of 50, 75, 100% respectively. Meanwhile, the growth rate value was 0.0743, 0.0759, 0.0354/day. The best protein content was obtained at nutrient synthetic of 75%, which was 91,27%. The good growth and protein content of S. platensis obtained at nutrient synthetic of 75%, which had C:N:P ratio of 128:12:1.
TEORI DASAR SIMULASI PROSES PEMBAKARAN LIMBAH VINASSE DARI INDUSTRI ALKOHOL BERBASIS CFD Triwibowo, Bayu
Jurnal Bahan Alam Terbarukan Vol 2, No 2 (2013): December 2013
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v2i2.2795

Abstract

In the midst of restrictions issue on the use of fossil fuels, the world began to move towards the use of renewable fuels. One such fuel is bio-ethanol. Production of bio-ethanol itself leaves vinasse wastetreatment problems with large discharge. There have been many ways to treat vinasse one of which is the burning of concentrated vinasse. Combustion process is a complex process in terms physical and chemical. Complex phenomenon will be difficult to be analyzed simultaneously and comprehensively when using conventional techniques. Simulation of combustion process based on CFD can be one such solution. In the case of vinasse as fuel and air as oxydizer the selected combustion model is a non-premixed combustion models with probability density function.
EKSTRAKSI MINYAK ATSIRI KULIT JERUK MANIS DENGAN METODE VACUUM MICROWAVE ASISSTED HYDRODISTILLATION Megawati, Megawati; kurniawan, rosa dwi
Jurnal Bahan Alam Terbarukan Vol 4, No 2 (2015): December 2015
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v4i2.4143

Abstract

The objective of this research is to extract essential oil of sweet orange peel (Citrus sinensis) using vacuum microwave assisted hydrodistillation (VMAHD) method. The operation condition was at various orange peel mass (50, 100, and 150 g) and extraction times (2, 4, 6, 8, and 10 min). The volume of water as solvent was about 300 mL. Before extraction, analysis of oil content in orange peel was conducted using solvent extraction by soxhlet method with 100 mL of n-hexane and 20 cycles number. The analysis resulted in the oils of sweet orange peel is about 3.2% v/w. Effect of extraction in vacuum conditions is studied by comparing the result of extraction in vacuum pressure to extraction at atmospheric pressure. The boiling temperature in atmospheric pressure was 80 oC and in vacuum pressure decreased to 50 oC. Thus oil yield in vacuum pressure is greater than at atmospheric pressure for 8 min of time. The experimental data showed that the oil yield is influenced by time; the longer time of extraction, oil yield obtained tends to be increased. In the material’s mass variation, oil yield tends to be decreased in percentage with increasing mass of material. The VMAHD method results on the oil content of 0.22% v/w yield obtained materials, test oil density of 0.84 g / mL, and essential oil dissolved in alcohol 70%. GC-MS analysis indicates that orange peel oil is composed of Limonene (96.69%), and Pinene (3.31%), which are in the class of sesquiterpenes
KAJIAN PROSES PEMBUATAN TEPUNG BUAH MANGGA (Mangivera Indica L) VARIETAS ARUMANIS DENGAN SUHU PERENDAMAN YANG BERBEDA Paramita, Octavianti
Jurnal Bahan Alam Terbarukan Vol 1, No 1 (2012): June 2012
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i1.2542

Abstract

Salah satu diversifikasi produk olahan yang menarik untuk dikembangkan adalah tepung da-ging buah mangga (mango powder) yang telah dikembangkan di negara India, Tepung buah mangga dapat digunakan sebagai bahan alternatif untuk membuat DF (dietary fibre), karena daging buah mangga mengandung pati yang banyak, tinggi selulosa, hemiselulosa, lignin dan carotin. Buah mangga  arumanis yang dibuat menjadi tepung mangga digunakan mangga arumanis yang belum matang / yang masih mentah. Proses perendaman sebelum dilakukan pengeringan sangat berpengaruh terhadap hasil dari tepung mangga yang dihasilkan baik berupa kandungan gizi dan warna. Penelitian ini bertujuan mendapatkan proses pembuatan tepung mangga varietas arumanis yang paling optimal hasilnya berdasarkan karakteristik fisik dan komposisi zat gizi. Proses pembuatan tepung mangga varietas arumanis yang paling optimal hasilnya dengan proses perendaman pada air dingin dan proses tersebut bisa dijadikan bahan dasar pembuatan olahan-olahan pangan yang tinggi serat. Karakteristik Fisik Tepung Mangga Arumanis dan Komposisi Zat Gizi Tepung Mangga Arumanis dengan proses Perendaman Air Dingin yaitu : Tepung berwarna putih kecoklatan, Tekstur : Halus, dan tidak tercium aroma mangga, Rendemen : 12,4 %., Kadar Serat : 3,7370 %, Kadar Vitamin C : 154,9944 mg/100 g, Kandungan Amilum/ Pati : 49,0419 % dan Kandungan Protein: 9,2856 %. One of the interesting diversification of the processed products to be developed is a mango pulp powder which has been developed in India. The mango flour can be used as an alternative material for making the dietary fiber (DF) because mango contains a lot of starch, high cellulose, hemicellulose, lignin, and carotin. The “arumanis” mango flour can be made from the immature “arumanis” mango fruits. The immersing process before drying greatly affect the quality of produced mangoes flour in terms of the nutrient composition and the colour. The study aimed to get the optimal results of the “arumanis” mangoes flour according to its characteristics and nutrient composition. The process of making the “arumanis” mangoes flour is optimally produced by immersion in the cold water. The resulted products from this process can be used as raw materials of producing food products with higher fiber content. The characteristics of the produced “arumanis” mangoes flour and its nutrient compositions, i.e. the powder colour is white-browned, the texture is smooth, doesn’t smell like mango, the yield is 12.4%, the fiber content is 3.7370%, the level of vitamin C is 154.9944 mg/100g, the starch content is 49.0419% and the protein content is 9.2856%.
THE EXTRACTION OF BROWN ALGAE (Sargassum sp) THROUGH CALCIUM PATH TO PRODUCE SODIUM ALGINATE Pasanda, Octovianus S. R.; Azis, Abdul
Jurnal Bahan Alam Terbarukan Vol 7, No 1 (2018): June 2018 [Nationally Accredited]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v7i1.11412

Abstract

Brown algae is a source of sodium alginat raw material. One type of brown algae that is found to grow in Indonesian waters is Sargassum echinocarphum. Brown algae including one type of seaweed that grows in many waters of Indonesia, especially the waters of Eastern Indonesia. Alginat is a pure polysaccharide of uronic acid contained in a brown algae cell wall arranged in the form of long linear chain alginic acids with levels reaching 40% of the total dry weight. The alginat form in general is sodium alginat, a water soluble alginat salt. The purpose of this research is to know the quality of alginat include alginat rendamen, water content, ash content, and viscosity. Conventional extraction methods from brown algae into sodium alginat produces the highest yield percentage of 32.42%, resulting from the extraction for 7 hours at 60 ° C. The lowest average yield percentage resulted in 5 hours extraction process of 2.78%, the average water content of 20.37 - 23.30%, the mean ash content of 22.28 - 34.87%, and the viscosity ranged between  18, 0 - 19.8 Cp.
PEMBUATAN KARBON AKTIF DARI KULIT JERUK KEPROK (Citrus reticulata) UNTUK ADSORBSI PEWARNA REMAZOL BRILLIANT BLUE Erprihana, Asriningtyas Ajeng; Hartanto, Dhoni
Jurnal Bahan Alam Terbarukan Vol 3, No 2 (2014): December 2014
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v3i2.3699

Abstract

Limbah kulit jeruk keprok (Citrus reticulata) sering dijumpai di industri pembuatan berbagai macam minuman seperti jus, sirup, dan sari buah. Limbah kulit jeruk ini hanya akan dibuang begitu saja dengan jumlah banyak, dan pada akhirnya limbah ini akan mencemari lingkungan. Salah satu upaya peningkatan nilai ekonomis limbah kulit jeruk dapat dilakukan dengan mengolahnya menjadi karbon aktif. Penelitian ini bertujuan untuk menghasilkan karbon aktif dari kulit jeruk keprok dengan aktivasi kimia, luas permukaan, serta mengetahui kemampuannya dalam mengadsorpsi zat warna Remazol Brilliant Blue. Kulit jeruk yang telah dibersihkan dari kotoran, dikeringkan menggunakan oven pada suhu 120oC selama 3 jam. Aktivator yang digunakan dalam penelitian ini adalah H3PO4 dengan rasio massa aktivator : massa karbon 1:1. Aktivasi dilakukan pada temperatur 600oC selama 1 jam, kulit jeruk kemudian dicuci dengan aquades dan dikeringkan menggunakan oven pada suhu 150oC selama 6 jam. Setelah itu, dilakukan uji bilangan iodin terhadap sampel hasil penelitian. Adsorpsi zat warna Remazol Brilliant Blue oleh karbon aktif kulit jeruk dilakukan dengan variasi waktu kontak dan massa karbon aktif untuk mencari kondisi adsorpsi optimum. Kondisi optimum adsorpsi zat warna Remazol Brilliant Blue oleh karbon aktif pada kulit jeruk keprok pada waktu kontak 30 menit dengan massa karbon aktif 1 gram. Karbon aktif dari kulit jeruk keprok memiliki luas permukaan karbon aktif sebesar 529,17 mg/g berdasarkan daya serapnya terhadap larutan iodin. Orange peel (Citrus reticulate) waste is often found in industrial manufacturing various kinds of beverages such as juice, syrup, fruit juice. Orange peel waste is just be thrown away with the lot number, and in the end of this waste will pollute the environment. One of the efforts to increase the economic value of orange peel waste by using the process which convert waste into activated carbon. This research aims are to produce activated carbon from orange peel with chemical activation, to determine the surface area, and its ability to adsorb Remazol Brilliant Blue dyes. Orangel peel that have washed, dried in oven at 120oC for 3 hours. H3PO4 is activating agent that used in this research with mass ratio activating agent : mass carbon 1:1. Activation is conduct at 600oC for 1 hour, orange peel then washed with bidistiled water, and dried in oven at 150oC for 6 hours. Iodine number was used to analysis the results. Adsorption of Remazol Brilliant Blue dyes by orange peel activated carbon conduct at variation contact time and mass activated carbon to find optimum condition. Optimum condition adsorption of Remazol Brilliant Blue dyes by orange peel actvated carbon isreached at 30 minutes contact time with mass activated carbon 1 gram. Activated carbon from orange peel has surface area 529,17 m g/gr based aqueous iodine adsorption.

Page 11 of 43 | Total Record : 426


Filter by Year

2012 2024


Filter By Issues
All Issue Vol 13, No 1 (2024): June 2024 [Nationally Accredited Sinta 2] Vol 12, No 2 (2023): December 2023 [Nationally Accredited Sinta 2] Vol 12, No 1 (2023): June 2023 [Nationally Accredited - Sinta 2] Vol 11, No 2 (2022): December 2022 [Nationally Accredited - Sinta 2] Vol 11, No 1 (2022): June 2022 [Nationally Accredited - SINTA 2] Vol 10, No 2 (2021): December 2021 [Nationally Accredited - Sinta 2] Vol 10, No 1 (2021): June 2021 [Nationally Accredited - SINTA 2] Vol 9, No 2 (2020): December 2020 [Nationally Accredited - Sinta 2] Vol 9, No 1 (2020): June 2020 [Nationally Accredited - Sinta 2] Vol 8, No 2 (2019): December 2019 [Nationally Accredited - Sinta 2] Vol 8, No 1 (2019): June 2019 [Nationally Accredited - Sinta 2] Vol 7, No 2 (2018): December 2018 [Nationally Accredited] Vol 7, No 1 (2018): June 2018 [Nationally Accredited] Vol 6, No 2 (2017): December 2017 [Nationally Accredited] Vol 6, No 1 (2017): June 2017 [Nationally Accredited] Vol 6, No 1 (2017): June 2017 [Nationally Accredited] Vol 5, No 2 (2016): December 2016 [Nationally Accredited] Vol 5, No 2 (2016): December 2016 [Nationally Accredited] Vol 5, No 1 (2016): June 2016 [Nationally Accredited] Vol 5, No 1 (2016): June 2016 [Nationally Accredited] Vol 4, No 2 (2015): December 2015 Vol 4, No 2 (2015): December 2015 Vol 4, No 1 (2015): June 2015 Vol 4, No 1 (2015): June 2015 Vol 3, No 2 (2014): December 2014 Vol 3, No 2 (2014): December 2014 Vol 3, No 1 (2014): June 2014 Vol 3, No 1 (2014): June 2014 Vol 2, No 2 (2013): December 2013 Vol 2, No 2 (2013): December 2013 Vol 2, No 1 (2013): June 2013 Vol 2, No 1 (2013): June 2013 Vol 1, No 2 (2012): December 2012 Vol 1, No 2 (2012): December 2012 Vol 1, No 1 (2012): June 2012 Vol 1, No 1 (2012): June 2012 More Issue