cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
juti.if@its.ac.id
Editorial Address
Gedung Teknik Informatika Lantai 2 Ruang IF-230, Jalan Teknik Kimia, Kampus ITS Sukolilo, Surabaya, 60111
Location
Kota surabaya,
Jawa timur
INDONESIA
JUTI: Jurnal Ilmiah Teknologi Informasi
ISSN : 24068535     EISSN : 14126389     DOI : http://dx.doi.org/10.12962/j24068535
JUTI (Jurnal Ilmiah Teknologi Informasi) is a scientific journal managed by Department of Informatics, ITS.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol. 20, No. 1, January 2022" : 5 Documents clear
DETECTION AND CLASSIFICATION OF RED BLOOD CELLS ABNORMALITY USING FASTER R-CNN AND GRAPH CONVOLUTIONAL NETWORKS Bramantya, Amirullah Andi; Fatichah, Chastine; Suciati, Nanik
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 20, No. 1, January 2022
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v19i3.a1118

Abstract

Research in medical imagery field such as analysis of Red Blood Cells (RBCs) abnormalities can be used to assist laboratory’s in determining further medical actions. Convolutional Neural Networks (CNN) is a commonly used method for the classification of RBCs abnormalities in blood cells images. However, CNN requires large number of labeled training data. A classification of RBCs abnormalities in limited data is a challenge. In this research we explore a semi-supervised learning using Graph Convolutional Networks (GCN) to classify RBCs abnormalities with limited number of labeled sample images. The proposed method consists of 3 stages, i.e., extraction of Region of Interest (ROI) of RBCs from blood images using Faster R-CNN, abnormality labeling and abnormality classification using GCN. The experiment was conducted on a publicly accessible blood sample image dataset to compare classification performance of pretrained CNN models (Resnet-101 and VGG-16) and GCN models (Resnet-101 + GCN and VGG-16 + GCN). The experiment showed that the GCN model build on VGG-16 features (VGG-16  + GCN) produced the best accuracy of 95%.
THE DEVELOPMENT OF QR CODE BASED MOBILE ATTENDANCE INFORMATION SYSTEM USING SCRUM FRAMEWORK Maulana, Muhammad Aqil; Natasia, Sri Rahayu; Prambudi, Dwi Arief; Fiqar, Tegar Palyus
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 20, No. 1, January 2022
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v19i3.a1015

Abstract

As one of State ‘s Higher Education Institutions, the Kalimantan Institute of Technology (ITK) must perform the education and teaching function as mandated by the tri dharma perguruan tinggi, then the function is regulated in academic regulations and implemented in business processes of attendance. Currently, the attendances data are recapitulated manually at week 15 by Academic Staff. The attendance process that has been running has several problems, namely prone to violations of the actual meeting realization and attendance count, recapitulation time that takes a long time, risk of data input errors and loss of presence sheet. Based on these problems, the attendance information system is developed (SIAP ITK). This research was conducted with the agile software development methodology with the scrum framework. The results of this research is an android  application following the business processes of attendance in ITK. Based on the testing result which was carried out during this research, SIAP ITK is considered capable of optimizing the attendance process that has been running at ITK.
MALICIOUS TRAFFIC DETECTION IN DNS INFRASTRUCTURE USING DECISION TREE ALGORITHM Thooriqoh, Hazna At; Azzmi, M. Naufal; Tofan, Yoga Ari; Shiddiqi, Ary Mazharuddin
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 20, No. 1, January 2022
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v19i3.a1054

Abstract

Domain Name System (DNS) is an essential component in internet infrastructure to direct domains to IP addresses or conversely. Despite its important role in delivering internet services, attackers often use DNS as a bridge to breach a system. A DNS traffic analysis system is needed for early detection of attacks. However, the available security tools still have many shortcomings, for example broken authentication, sensitive data exposure, injection, etc. This research uses DNS analysis to develop anomaly-based techniques to detect malicious traffic on the DNS infrastructure. To do this, We look for network features that characterize DNS traffic. Features obtained will then be processed using the Decision Tree algorithm to classifyincoming DNS traffic. We experimented with 2.291.024 data traffic data matches the characteristics of BotNet and normal traffic. By dividing the data into 80% training and 20% testing data, our experimental results showed high detection aacuracy (96.36%) indicating the robustness of our method.
FRECOMTWEET: PRODUCT RECOMMENDATION APPLICATION USING FRIENDSHIP CLOSENESS ON TWITTER Anggraini, Ratih Nur Esti; Maulida, Ainatul; Siahaan, Daniel Oranova
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 20, No. 1, January 2022
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v19i3.a1104

Abstract

The information and communication technology development makes someone interact with each other easier. This convenience is used to exchange ideas, like using social media Twitter for product recommendations before buying it. It brings up a trend that consumers seek product recommendations through other people on social media. Social media, especially Twitter, has several features such as tweets, ReTweet and mentions to interact with other people. Users can describe the product, attach a link, and give a positive or negative rating in a tweet. These types of tweets can be used as an alternative to product recommendations. FrecomTweet is an Android-based product recommendation application that can detect close friendships based on the user’s ReTweet and mentions. This application also detects a product recommendation that appears in a conversation between users. This detection uses the keyword filtering method, which matches the conversation content with the markers in the database. If the conversation has a positive rating, it will recommend the user’s closest friends. This research uses a crawling method with the Twitter API streaming filter built using the CodeIgniter framework. The results of the black box test show that Twitter user conversations can be used as a product recommendation with a precision and recall value of 0.94 and 0.81, respectively.
ENERGY EFFICIENT SLEEP WAKEUP SCHEDULING METHOD FOR P-COVERAGE AND Q-CONNECTIVITY MODEL IN TARGET BASED WIRELESS SENSOR NETWORKS Rosyadi, Fuad Dary; Anggoro, Radityo
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 20, No. 1, January 2022
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v19i3.a1088

Abstract

Energy limitations are the problem that gets the most attention in the term of Wireless Sensor Networks (WSN). Sleep wakeup scheduling method is one of the most efficient techniques to increase sensor node operational time on WSN. However, in the target-based WSN environment with p-coverage and q-connectivity models, the use of wake-up scheduling has to consider the constraints on the number of connectivity on the sensor and coverage on the target. Genetic Algorithm is a solution to the problem of sleep-wake scheduling with multi-objective problems. This study proposes a new method of sleep wakeup scheduling based on Genetic Algorithm for energy efficiency in target-based WSN with p-coverage and q-connectivity models. This new method uses the sensor range, connectivity range and energy as an objective function of the fitness function in the Genetic Algorithm. With the presence of energy as a factor of the objective function can increase energy efficiency in target-based WSN with p-coverage and q-connectivity models.

Page 1 of 1 | Total Record : 5