cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Geoplanning : Journal of Geomatics and Planning
Published by Universitas Diponegoro
ISSN : -     EISSN : 23556544     DOI : -
Core Subject : Science,
Geoplanning, Journal of Geomatics and Planning (E-ISSN: 2355-6544), is an open access journal (e-journal) focusing on the scientific works in the field of applied geomatics technologies for urban and regional planning including GIS, Remote Sensing and Satellite Image Processing. This journal is published every six months in April and October (2 issues per year), and developed by the Geomatics and Planning Laboratory, Department of Urban and Regional Planning, Diponegoro University
Arjuna Subject : -
Articles 181 Documents
MODEL OF CLIMATE AND LAND-USE CHANGES IMPACT ON WATER SECURITY IN AMBON CITY, INDONESIA Roland Alexander Barkey; Muh Faisal Mappiasse; Munajat Nursaputra
Geoplanning: Journal of Geomatics and Planning Vol 4, No 1 (2017)
Publisher : Department of Urban and Regional Planning, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/geoplanning.4.1.97-108

Abstract

Ambon City is the center of national activities in Maluku province, established under Presidential Decree 77 issued in 2014 about spatial planning of Maluku Islands. Ambon is a strategic region in terms of development in agriculture and fisheries sectors. Development of the region caused this area to be extremely vulnerable to the issues on water security. Seven watersheds which are Air Manis, Hutumury, Passo, Tulehu, Wae Batu Merah, Wae Lela and Wae Sikula affect the water system in Ambon City. Therefore, this study was conducted to determine the impact of climate and land use change on water availability in seven watersheds in Ambon City. The analysis was performed using a Soil and Water Assessment Tool (SWAT) Model in order to analyze climate changes on the period of 1987-1996 (past), of 2004-2013 (present) and climate projection on the period 2035s (future) and equally to analyze land use data in 1996 and 2014. The results of the research indicated that land use in the study area has changed since 1996 to 2014. Forest area decreased around 32.45%, while residential areas and agriculture land increased 56.01% and 19.80%, respectively. The results of SWAT model presented the water availability amount to 1,127,011,350 m3/year on the period of 1987-1996. During the period of 2004-2013, it has been reduced to 1,076,548,720 m3/year (around 4.48% decrease). The results of the prediction of future water availability in the period of 2035s estimated a decrease of water availability around 4.69% (1,026,086,090 m3/year). Land use and climate change have greatly contributed to the water availability in seven watersheds of Ambon City. Ambon City is in need of land use planning especially the application of spatial plan. The maintenance of forest area is indispensable. In built-up areas, it is essential to implement green space and water harvesting in order to secure water availability in the future.
ADVANCED LAND COVER MAPPING OF TROPICAL PEAT SWAMP ECOSYSTEM USING AIRBORNE DISCRETE RETURN LIDAR Solichin Manuri; Hans-Erik Andersen; Cris Brack; Bruce Doran
Geoplanning: Journal of Geomatics and Planning Vol 4, No 1 (2017)
Publisher : Department of Urban and Regional Planning, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/geoplanning.4.1.1-8

Abstract

The ability to better understand tropical peat ecosystems for restoration and climate change mitigation is often hampered by the lack of availability accurate and detailed data on vegetation cover and hydrologys, which is typically only derived from detailed and high-resolution imaging or field-based measurements. The aims of this study were to explore the potential advantage of airborne discrete-return lidar for mapping of forest cover in peat swamp forests. We used 2.8 pulse.m-1 lidar and the associated 1-m DTM derived from an airborne platform. The lidar dataset fully covered a 120 thousand hectare protection forest in Central Kalimantan. We extracted maximum vegetation heights in 5-m grid resolution to allow detailed mapping of the forest. We followed forest definition from FAO for forest and non-forest classification. We found that lidar was able to capture detail variation of canopy height in high-resolution, thus provide more accurate classification. A comparison with existing maps suggested that the lidar-derived vegetation map was more consistent in defining canopy structure of the vegetation, with small standard deviations of the mean height of each class.
RELATIONSHIP BETWEEN URBANIZATION AND DENGUE HAEMORRHAGIC FEVER INCIDENCE IN SEMARANG CITY Isnu Putra Pratama; Sri Rahayu
Geoplanning: Journal of Geomatics and Planning Vol 3, No 1 (2016)
Publisher : Department of Urban and Regional Planning, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1273.869 KB) | DOI: 10.14710/geoplanning.3.1.67-76

Abstract

Unplanned urbanization can cause unhealthy urban environment, which in turn increases the population of mosquitoes carrying the dengue vector. Consequently, this would reduce the urban life quality because public health is an important aspect of it. The increasing incidence of Dengue Hemorrhagic Fever (DHF) in Semarang City has been alarming. In 2013, the incidence was 2,364 cases, which increased up to 89.11% from the 1,250 cases of 2012. So, it is necessary to study about what relationship is there between the level of urbanization and the incidence of DHF in Semarang. This study used quantitative and spatial approach. The unit of analysis is sub-district with time series data from 2006 to 2013. The analysis technique is spatial analysis through image interpretation, regression, and descriptive analysis. The level of urbanization has been measured through the variables of population growth, population density, land use change, and building density. The results have shown that there is no significant correlation between the level of urbanization and the incidence of dengue fever. The urbanization is acknowledged as influencing only about 28% of the DHF incidence in the city, while the other 72% has been influenced by other factors.
THE DEVELOPMENT OF MARINE SPATIAL PLANNING AND ITS APPLICATION FOR FLOATING FISH NET CULTURE Dewayany Sutrisno
Geoplanning: Journal of Geomatics and Planning Vol 4, No 1 (2017)
Publisher : Department of Urban and Regional Planning, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/geoplanning.4.1.41-52

Abstract

Marine spatial planning has become the crucial issues for an archipelagic state such as Indonesia. The global market demand on marine economic species has been initiated the exploitation of the marine species which will become the hindrance in maintaining the sustainable marine biodiversity. Besides that, the degradation of marine species will also become the problem for traditional fishermen. Therefore, a model has to be employed to spatially manage the coastal waters as the alternative for fishermen activities during closed seasons, such as floating fish net culture.  The aim of this study was to develop marine spatial planning model based on ecological approach in order to identify the potentiality of marine waters for marine culture such as floating fish net culture. The method for the model consisted of social assessment using the Delphi for developing the rule of marine planning for floating fish net culture and the spatial analysis technique for determining the model of marine spatial planning for floating fish net culture. The area of Kupang Bay waters, East Nusa Tenggara was used as the study area. The result indicated that the model can be used to sustainable marine spatial planning, especially for floating fish net culture. The model considered the aspects of potential area for marine culture, the management of zonation and transportation lanes, the conservation and protected area and the strategic area. Application in Kupang bay illustrated the aspect of technology input such as raceways since the majority of the area of Kupang Bay waters is classified as medium potential. Further research still needs to optimum the application of model to others marine area.
ASSESSMENT OF MANGROVE FOREST DEGRADATION THROUGH CANOPY FRACTIONAL COVER IN KARIMUNJAWA ISLAND, CENTRAL JAVA, INDONESIA Muhammad Kamal; Hartono Hartono; Pramaditya Wicaksono; Novi Susetyo Adi; Sanjiwana Arjasakusuma
Geoplanning: Journal of Geomatics and Planning Vol 3, No 2 (2016)
Publisher : Department of Urban and Regional Planning, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1334.232 KB) | DOI: 10.14710/geoplanning.3.2.107-116

Abstract

The Karimunjawa Islands mangrove forest has been subjected to various direct and indirect human disturbances in the recent years. If not properly managed, this disturbance will lead to the degradation of mangrove habitat health. Assessing forest canopy fractional cover (fc) using remote sensing data is one way of measuring mangrove forest degradation. This study aims to (1) estimate the forest canopy fc using a semi-empirical method, (2) assess the accuracy of the fc estimation and (3) create mangrove forest degradation from the canopy fc results. A sample set of in-situ fc was collected using the hemispherical camera for model development and accuracy assessment purposes. We developed semi-empirical relationship models between pixel values of ALOS AVNIR-2 image (10 m pixel size) and field fc, using Enhanced Vegetation Index (EVI) as a proxy of the image spectral response. The results show that the EVI provides reasonable estimation accuracy of mangrove canopy fc in Karimunjawa Island with the values ranged from 0.17 to 0.96 (n = 69). The low fc values correspond to vegetation opening and gaps caused by human activities or mangrove dieback. The high fc values correspond to the healthy and dense mangrove stands, especially the Rhizophora sp formation at the seafront. The results of this research justify the use of simple canopy fractional cover model for assessing the mangrove forest degradation status in the study area. Further research is needed to test the applicability of this approach at different sites.
INCREASING ACCURACY VALUE IN THE ESTIMATES OF CARBON STOCK BY USING VEGETATION INDEX FROM ALOS AVNIR 2 SATELLITE IMAGERY Irland Fardani; Soni Darmawan; Dudung M Hakim; Agung Budi Harto; Ketut Wikantika
Geoplanning: Journal of Geomatics and Planning Vol 3, No 1 (2016)
Publisher : Department of Urban and Regional Planning, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2424.742 KB) | DOI: 10.14710/geoplanning.3.1.1-14

Abstract

The existence of carbon stock began to be noticed by the public, especially after the global warming phenomenon, because one of the causes of global warming is the increasing amount of carbon in the atmosphere. There are several approaches that can be used to calculate carbon stocks, one of which is through remote sensing. In the study of carbon stocks in Meru Betiri National Park Indonesia, the vegetation index from ALOS-AVNIR satellite imagery is used to estimate carbon reserves by finding an exact equation. If it uses the Modified Soil Adjusted Vegetation Index (MSAVI) only, the correlation value is 0.49. Meanwhile, if Infrared Percentage Vegetation Index (IPVI) is used, the correlation value is 0.47. However, if some vegetation indices such as Soil-Adjusted Vegetation Index (SAVI), Normalize Difference Vegetation Index (NDVI) and Ratio Vegetation Index (RVI) are combined, the correlation value of the equation is 0.63. The comparison showed that by combining several variables of vegetation indices will increase the value of the correlation equation significantly.
MITIGATION SCENARIOS FOR RESIDENTIAL FIRES IN DENSELY POPULATED URBAN SETTLEMENTS IN SUKAHAJI VILLAGE, BANDUNG CITY Saut Aritua Hasiholan Sagala; Praditya Adhitama; Donald Ganitua Sianturi; Umar Al Faruq
Geoplanning: Journal of Geomatics and Planning Vol 3, No 2 (2016)
Publisher : Department of Urban and Regional Planning, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1620.847 KB) | DOI: 10.14710/geoplanning.3.2.147-160

Abstract

Residential fires are a form of disaster that often occurs in urban areas especially in densely populated settlements. This study looks at possible mitigation scenarios for this kind of disaster. A case study was conducted in Babakan Ciparay Sub-District in Bandung City, among the densely populated settlements, and was focused especially on Sukahaji Village, a sub-unit of Babakan Ciparay, which is the most densely populated village in Bandung City with up to 234.14 people/ha. There have been six structural fires recorded from 2007 until 2010 occurring in Sukahaji. This study applied stratified random sampling as the preferred sampling technique and data collection method from a total population of 3,227 buildings. The data was then examined using risk analysis. The results have led to two intervention measures suggested as mitigation scenarios for residential fires that can be applied within the Sukahaji Village. The study concludes that mitigation measures through strengthening community capacity can be the principal option in reducing risk to fires in densely populated urban settlements.
MONITORING THE LAND USE CHANGE IN CAMPUS 2 STKIP PGRI PONTIANAK Ajun Purwanto; Galuh Bayuardi
Geoplanning: Journal of Geomatics and Planning Vol 3, No 1 (2016)
Publisher : Department of Urban and Regional Planning, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1639.86 KB) | DOI: 10.14710/geoplanning.3.1.77-86

Abstract

The aims of the research are: 1) investigating the changes of land-use occurring at campus 2 of STKIP PGRI Pontianak, 2) determining the tendency towards changes of land-use at campus 2 of STKIP PGRI Pontianak and, 3) mapping the land-use change at campus 2 of STKIP PGRI Pontianak from 2003 to 2011. The methods used in this research were survey and interpretation of the image of a multiple-color composite in 2003, 2008 and 2011 using GIS software. The data used were the types of land-use and the width of land-use change area. The data were analyzed by overlay method. The results have shown the following: 1) The changes of land use have been largely from forest land and paddy fields to settlement area; 2) The trend of the change is approaching to the North side, East side, South side and West side of the campus; 3) The characteristics of the extension of land-use changes from 2003 to 2011 are: settlement increased 66,110 m2, field service (restaurant) became 10,254 m2, the fields had added 17,097 m2, paddy field had decreased 25,211 m2, the forest area had decreased 104,327 m2 and educational facilities had increased 35,427 m2 while police station had extended 650 m2.
STUDY OF SEA LEVEL RISE USING SATELLITE ALTIMETRY DATA IN THE SEA OF DUMAI, RIAU, INDONESIA Dewi Ariana; Cecep Kusmana; Yudi Setiawan
Geoplanning: Journal of Geomatics and Planning Vol 4, No 1 (2017)
Publisher : Department of Urban and Regional Planning, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/geoplanning.4.1.75-82

Abstract

Climate change and global warming has impacted the entire world. It has caused ice melting at the poles, climate extreme event, land subsidence which further affected sea level to rise, such as particularly, in Dumai coastal areas. To date, sea level rise is one of the important global issues. This increases the vulnerability effect in coastal areas which threatens human life, especially those living in coastal regions. Sea level rise can be forecasted by satellite imagery like ENVISAT, Topex/Poseidon, Jason-1 and Jason-2. This paper presents an approach to quantify the sea-level variations and sea level trend based on a combination of multi-mission satellite altimetry data over a period of 21 years (1993-2014). Monitoring of sea level rise was conducted by taking data from 6 stations. SLA was calculated using a typical moving average to reduce fluctuation. Sea level rise was calculated using a linear regression. Positive sea-level linear trends for the analysis period were estimated for sea level rise. The results showed that the range sea level rise reaching 4.80 mm/year to 5.61 mm/year has occured in Dumai. Dumai is predicted to have an additional sea level of 0.17-0.20 m by the year 2050, 0.41-0.48 m by the year 2100 and 0.65-0.76 m by the year 2150. The sea level rise trends in the North West part Dumai were higher than the other stations and down to South East. Based on the predicted results, Dumai should prepare plans to mitigate the rising of sea levels.
IMPLEMENTATION OF THE MARKOV RANDOM FIELD FOR URBAN LAND COVER CLASSIFICATION OF UAV VHIR DATA Jati Pratomo; Triyoga Widiastomo
Geoplanning: Journal of Geomatics and Planning Vol 3, No 2 (2016)
Publisher : Department of Urban and Regional Planning, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1431.283 KB) | DOI: 10.14710/geoplanning.3.2.127-136

Abstract

The usage of Unmanned Aerial Vehicle (UAV) has grown rapidly in various fields, such as urban planning, search and rescue, and surveillance. Capturing images from UAV has many advantages compared with satellite imagery. For instance, higher spatial resolution and less impact from atmospheric variations can be obtained. However, there are difficulties in classifying urban features, due to the complexity of the urban land covers. The usage of Maximum Likelihood Classification (MLC) has limitations since it is based on the assumption of the normal distribution of pixel values, where, in fact, urban features are not normally distributed. There are advantages in using the Markov Random Field (MRF) for urban land cover classification as it assumes that neighboring pixels have a higher probability to be classified in the same class rather than a different class. This research aimed to determine the impact of the smoothness (λ) and the updating temperature (Tupd) on the accuracy result (κ) in MRF. We used a UAV VHIR sized 587 square meters, with six-centimetre resolution, taken in Bogor Regency, Indonesia. The result showed that the kappa value (κ) increases proportionally with the smoothness (λ) until it reaches the maximum (κ), then the value drops. The usage of higher (Tupd) has resulted in better (κ) although it also led to a higher Standard Deviations (SD). Using the most optimal parameter, MRF resulted in slightly higher (κ) compared with MLC.

Page 5 of 19 | Total Record : 181