cover
Contact Name
Agung Setia Budi
Contact Email
agungsetiabudi@ub.ac.id
Phone
+62341-577911
Journal Mail Official
jtiik@ub.ac.id
Editorial Address
Fakultas Ilmu Komputer Universitas Brawijaya Gedung F FILKOM Lt. 8, Ruang BPJ Jalan Veteran No. 8 Malang Indonesia - 65145
Location
Kota malang,
Jawa timur
INDONESIA
Jurnal Teknologi Informasi dan Ilmu Komputer
Published by Universitas Brawijaya
ISSN : 23557699     EISSN : 25286579     DOI : http://dx.doi.org/10.25126/jtiik
Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) merupakan jurnal nasional yang diterbitkan oleh Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya (UB), Malang sejak tahun 2014. JTIIK memuat artikel hasil-hasil penelitian di bidang Teknologi Informasi dan Ilmu Komputer. JTIIK berkomitmen untuk menjadi jurnal nasional terbaik dengan mempublikasikan artikel berbahasa Indonesia yang berkualitas dan menjadi rujukan utama para peneliti. JTIIK di akreditasi oleh Kementerian Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia Nomor: 36/E/KPT/2019 yang berlaku sampai dengan Volume 11 Nomor 2 Tahun 2024.
Articles 1,288 Documents
Identifikasi Parameter Kualitas Bahan Pangan dengan Metode Entropy-Based Subset Selection (E-SS) (Studi Kasus: Minuman Anggur) Tjen, jimmy
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 1: Februari 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.20241116850

Abstract

Penelitian ini bertujuan untuk membangun sebuah algoritma yang dapat mengidentifikasi parameter dari bahan pangan yang mempengaruhi kualitas dari bahan makanan tersebut menggunakan algoritma pemilihan himpunan bagian berbasis entropi dan metode pohon klasifikasi dari pembelajaran pohon keputusan. Metode pemilihan himpunan bagian berbasis entropi secara khusus merupakan sebuah algoritma yang bertujuan untuk memilih sekumpulan dari parameter yang memiliki hubungan entropi yang baik satu sama lain, sehingga dapat menghasilkan model prediktif yang optimal. Untuk memvalidasi performa dari algoritma yang digagas, penelitian ini mengambil sampel dari minuman anggur merah dan putih yang berasal dari negara Portugal. Berdasarkan pada percobaan yang telah dilakukan, diperoleh hasil bahwa algoritma yang digagas dapat memprediksi kualitas dari anggur putih dengan akurasi hingga 97,8 % dan 96,25% untuk kualitas anggur merah. Dimana, nilai ini lebih tinggi dari metode pohon klasifikasi klasik, dan algortima yang digagas hanya membutuhkan jumlah parameter yang lebih sedikit ( hanya 2 hingga 5 dari total 11 parameter input yang ada) jika dibandingkan dengan metode klasik. Lebih lanjut, berdasarkan pada percobaan yang telah dilakukan, diperoleh temuan bahwa parameter yang paling menentukan kualitas dari anggur putih adalah tingkat keasaman, kadar alkohol, pH dan kandungan klorit. Sedangkan untuk anggur merah, kualitas secara dominan ditentukan oleh kandungan sisa gula, densitas minuman dan kandungan dari sulfur oksida.
Evaluasi Faktor-Faktor Pembelajaran Online pada Perguruan Tinggi Menggunakan Analytic Hierarchy Process (AHP): Studi Kasus Politeknik Elektronika Negeri Surabaya (PENS) Faradisa, Rosiyah; Assidiqi, Mohammad Hasbi; Badriah, Tessy
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 4: Agustus 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023106860

Abstract

Pandemi Covid-19 dan lockdown telah memaksa dunia pendidikan untuk bergerak secara online. Perubahan yang telah terjadi akibat pandemi covid-19 yang telah terjadi sementara sekitar dua tahun di perguruan tinggi, diperkirakan tidak bersifat sementara dan bahkan akan berlanjut. Standar evaluasi pembelajaran tatap muka tradisional tidak dapat diterapkan begitu saja pada pembelajaran online, di perlukan penyesuaian khusus untuk kondisi kelas online. Pada penelitian ini dilakukan pandangan dan pengkajian yang komprehensif terhadap 3 faktor utama dalam penyelenggaraan perkuliahan online di perguruan tinggi meliputi faktor dosen, siswa, dan Learning Management System (LMS). Penelitian dilakukan dengan studi kasus Politeknik Elektronika Negeri Surabaya (PENS) dari sudut pandang dosen dan mahasiswa. Evaluasi faktor-faktor tersebut dilakukan dengan menggunakan AHP untuk pemeringkatan dan mendapatkan nilai kepentingan relatif. Dari perhitungan AHP yang telah dilakukan, diperoleh 10 faktor dengan penilaian tertinggi baik dari responden dosen maupun mahasiswa. Dari 10 faktor tersebut diperoleh 5 faktor yang beririsan antara dosen dan mahasiswa. Kesimpulan yang diperoleh dari penelitian ini dapat digunakan sebagai bahan evaluasi faktor-faktor pembelajaran online di perguruan tinggi pada umumnya, dan PENS khususnya.AbstractThe COVID-19 pandemic and lockdown have forced the world of education to move online. The changes that have taken place as a result of the COVID-19 pandemic, which has occurred for about two years in college, are not expected to be temporary and will even continue. Traditional face-to-face learning evaluation standards cannot simply be applied to online learning; special adjustments are needed for online class conditions. A comprehensive view and assessment of the three main factors in the implementation of online lectures in tertiary institutions, including lecturers, students, and the Learning Management System (LMS), were carried out in this study. The research was conducted using PENS case studies from the perspective of lecturers and students. These factors are ranked and their relative importance values are calculated using AHP. From the AHP calculations that have been carried out, 10 factors with the highest ratings were obtained from both lecturer and student respondents. From these 10 factors, 5 factors were obtained that intersected between lecturers and students. The findings of this study can be used to evaluate the factors of online learning in tertiary institutions in general, and PENS in particular.
Pengukuran Kemiripan Makna Menggunakan Cosine Similarity dan Basis Data Sinonim Kata Sanjaya, Ardi; Setiawan, Ahmad Bagus; Mahdiyah, Umi; Farida, Intan Nur; Prasetyo, Aprisa Risky
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 4: Agustus 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2024106864

Abstract

Penelitian ini bertujuan untuk memberikan alternatif dalam menguji kemiripan makna antar 2 kalimat. Pembentukan database sinonim kata dilakukan dengan mengelompokkan kata berdasar sinonim atau yang memiliki kesamaan arti. Masing-masing kelompok kata diberikan ID unik. Selanjutnya setiap kelompok kata dipecah untuk diuraikan menjadi kata tunggal, disimpan pada tabel kata dengan melabeli ID kata dan ID sinonim. ID sinonim didasarkan pada ID unik pada tabel sinonim. Dalam pengujian kemiripan makna, masing-masing kalimat akan di urai menjadi kata dan tiap-tiap kata akan dicocokkan berdasarkan tabel kata dengan acuan ID sinonim. ID Sinonim yang didapat kemudian dilakukan pengukuran jarak vektor dan kemiripan menggunakan rumus cosine similarity. Berdasarkan pengujian dan analisa yang telah dilakukan, dari 25 pengujian didapati 24 nilai kemiripan mengalami peningkatan prosentase. Hal tersebut dikarenakan penggunaan ID yang didasarkan pada kelompok kata dan irisan saat proses pembobotan mampu meningkatkan nilai kemiripan. Rata-rata nilai kemiripan pada penggunaan ID sebagai vektor hitung adalah 94,48% dan rata-rata nilai kemiripan pada metode atau alur pembanding adalah sebesar 69,96%. AbstractThis study aims to provide an alternative in testing the similarity of meaning between 2 sentences. The formation of a word synonym database is done by grouping words based on synonyms or those that have the same meaning. Each group of words is assigned a unique ID. Furthermore, each group of words is broken down to be broken down into single words, stored in the word table labeled word ID and synonym ID. Synonym ID is based on the unique ID in the synonym table. In testing the similarity of meaning, each sentence will be broken down into words and each word will be matched based on the word table with synonym ID references. The synonym ID obtained is then measured by measuring the vector distance and similarity using the cosine similarity formula. Based on the tests and analyzes that have been carried out, out of 25 tests it was found that 24 similarity values experienced an increase in the percentage. This is because the use of ID based on word groups and slices during the weighting process can increase the similarity value. The average similarity value in the use of ID as a calculating vector is 94.48% and the average similarity value in the comparison method or plot is 69.96%.
Prediksi Penuaan Wajah Manusia Berbasis Generative Adversarial Network Elfitri, Beladina; Rachmawati, Ema; Agung Budi Wirayuda, Tjokorda
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 1: Februari 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.20241116870

Abstract

Karena struktur wajah manusia yang berbeda-beda, wajah merupakan salah satu ciri yang digunakan untuk mengidentifikasi seseorang. Wajah sering digunakan sebagai pengenal biometrik. Namun, seiring bertambahnya usia manusia, wajah mereka bisa berubah karena faktor lingkungan dan gaya hidup. Karena efek penuaan pada wajah, komputer tidak dapat mengenali kemiripan antara citra wajah dari orang yang sama pada usia yang berbeda. Penelitian pengenalan wajah biasanya menggunakan data berpasangan (paired data), yang sangat sulit didapat. Di sisi lain, volume data yang tidak berpasangan (unpaired data) sangat besar dan mudah diakses. Sebaliknya, keterbatasan data berpasangan memotivasi para peneliti untuk mengembangkan teknik sintesis citra yang tidak bergantung pada data berpasangan. Tanpa perlu data berpasangan, metode CycleGAN mampu menghasilkan citra sintetik yang lebih realistis dengan resolusi lebih tinggi. Hal itulah yang memotivasi penelitian ini dalam penggunaan data tidak berpasangan untuk memprediksi penuaan wajah manusia menggunakan CycleGAN. Pada penelitian ini, digunakan citra dari dataset UTKFace yang terdiri atas citra wajah berbagai usia. Untuk keperluan eksperimen, citra dari UTKFace dibagi ke dalam dua ranah, yaitu citra wajah usia muda dan citra wajah usia tua, untuk keperluan sistem penuaan wajah yang dibangun. Dengan demikian, citra wajah berusia muda tidak memiliki pasangan pada citra wajah usia tua (unpaired data). Dengan nilai Frechet Inception Distance (FID) = 2,24, hasil percobaan menunjukkan bahwa metode yang digunakan mampu mencapai kinerja yang sangat baik pada sistem penuaan wajah yang dibangun.
Pengembangan Sistem Monitoring Pendataan Aplikasi Berbasis Web pada Kementerian Pekerjaan Umum dan Perumahan Rakyat Safira, Salma Nada; Mursityo, Yusi Tyroni; Saputra, Mochamad Chandra
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 5: Oktober 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023106891

Abstract

Kementerian Pekerjaan Umum dan Perumahan Rakyat adalah kementerian Indonesia yang mempunyai tugas menyelenggarakan kegiatan pemerintahan di bidang pekerjaan umum dan perumahan rakyat untuk membantu Presiden. Perangkat lunak yang dimiliki oleh Kementerian PUPR sangat banyak, sehingga membutuhkan monitoring pendataan aplikasi. Pada pemantauan aplikasi di kementerian PUPR masih menggunakan Google Workspace, proses tersebut menyebabkan harus melakukan pengecekan setiap aplikasi dan menjadi tidak efisien. Sehingga, membutuhkan adanya solusi dengan pengembangan sistem monitoring aplikasi. Aktivitas pada sistem monitoring dengan melacak status aplikasi, dan melakukan pengelolaan data perangkat lunak. Metode Rational Unified Process (RUP) digunakan untuk membuat aplikasi. Pendekatan dilakukan menggunakan pengembangan berorientasi objek dengan UML. Proses implementasi sistem menggunakan kerangka kerja Laravel. Hasil penelitian ini adalah sistem monitoring aplikasi berbasis website. Sistem yang berhasil dibangun, kemudian melalui proses pengujian sistem. Pengujian unit dilakukan dengan white box testing yang menghasilkan status uji valid berdasarkan pada semua path. Pengujian validasi dengan black box testing menunjukan bahwa semua fitur valid. User Acceptance Testing menghasilkan nilai akhir 94,67% sehingga sudah sesuai dengan kebutuhan pengguna. Kontribusi sistem terhadap organisasi dapat memperbaiki efisiensi pada monitoring aplikasi dan meningkatkan efektivitas, karena data tersimpan di dalam database. Abstract Assisting the President in managing government activities pertaining to public works and public housing is the responsibility of the Ministry of Public Works and Public Housing in Indonesia. The Ministry of PUPR owns a considerable amount of software, so it requires monitoring application data collection. In monitoring applications at the PUPR ministry, they still use Google Workspace. This process causes them to have to check each application, which becomes inefficient. Thus, it requires a solution through the development of an application monitoring system. Monitoring activities that can be carried out on this system can track the status of application and manage software data. This application is designed using the Rational Unified Process (RUP) method. The approach is carried out using object-oriented development with UML. The system implementation process uses the Laravel framework. The result of this research is a website-based application monitoring system. The system that is successfully built then goes through the system testing process. Unit testing is done by white box testing, which produces a valid test status based on all paths. Validation testing with black box testing shows that all features are valid. User Acceptance Testing produces a final value of 94.67% so that it is in accordance with user needs. The contribution of the system to the organization can improve efficiency in application monitoring and increase effectiveness because the data is stored in the database.
Pengelompokan Hasil Pencarian Skripsi Berbahasa Indonesia Menggunakan Metode DBSCAN dengan Pembobotan BM25 Satria, Rangga Adi; Indriati, Indriati; Sutrisno, Sutrisno
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 4: Agustus 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2024106899

Abstract

Skripsi merupakan tugas akhir yang disusun oleh mahasiswa sebagai persyaratan untuk memperoleh gelar sarjana. Mesin pencari untuk mempermudah pencarian dokumen skripsi yang disimpan pada perpustakaan maupun penyimpanan digital umumnya menggunakan metode sederhana dengan mengembalikan dokumen yang mengandung potongan kata atau identik dengan kata kunci, sehingga dokumen yang diperoleh kurang relevan. Hasil pencarian dapat dikelompokan sehingga dokumen tersaji dengan lebih terperinci dan memudahkan pencarian lebih lanjut. Guna mengelompokan hasil pencarian skripsi berbahasa Indonesia, dengan menggunakan judul dan abstrak skripsi, digunakan pembobotan kata BM25 dan pengelompokan DBSCAN, metode pengelompokan yang mempertimbangkan kepadatan titik sampel dokumen. Pengujian dilakukan dengan mengukur hasil pengelompokan menggunakan rata-rata silhouette coefficient terhadap parameter epsilon dan MinPts pada metode DBSCAN, serta k1 dan b pada pembobotan BM25 dengan 4 skenario yang berbeda. Hasil pengujian menunjukan bahwa parameter k1 dan b pada pembobotan BM25 cukup mempengaruhi kualitas pengelompokan dengan metode DBSCAN. Hasil rata – rata silhouette coefficient terbaik untuk masing masing skenario secara berurutan adalah 0.722, 0.762, 0.945 dan 0.907 dengan parameter terbaik berupa k1=1.8, b=0.5, epsilon=0.1 dan MinPts=5 pada skenario pertama. k1=1.9, b=0.5, epsilon=0.1 dan MinPts=5 pada skenario kedua. k1=1.4, b=0.55, epsilon=0.1 dan MinPts=5 pada skenario ketiga dan k1=1.8, b=0.65, epsilon=0.1 dan MinPts=5 pada skenario keempat. AbstractThesis is a final project that must be completed by students as requirement to obtain a bachelor degree. Search engines used for searching thesis documents stored in libraries or digital storage generally use a simple method by returning documents that contain a snippet of the word or are identical to the keywords, so the obtained documents become less relevant. Search results can be clustered with the purpose of presenting the documents in more detailed way and to ease further searches. In order to cluster the search results of Indonesian language thesis, using the title and abstract of the thesis, BM25 word weighting and DBSCAN clustering were used, a clustering method that considers the document sample density point. The test performed by measuring the clustering results using the average silhouette coefficient on the epsilon and MinPts parameters in the DBSCAN method, as well as k1 and b in the BM25 weighting on 4 different scenarios. The test results show that k1 and b parameters on BM25 weighting is quite affecting the quality of the clustering results using DBSCAN method. The best average silhouette coefficient results for each scenario sequentially are 0.722, 0.762, 0.945 and 0.907 by using the best parameters in the form of k1=1.8, b=0.5, epsilon=0.1 and MinPts=5 in the first scenario. k1=1.9, b=0.5, epsilon=0.1 and MinPts=5 in the second scenario. k1=1.4, b=0.55, epsilon=0.1 and MinPts=5 in the third scenario and k1=1.8, b=0.65, epsilon=0.1 and MinPts=5 in the fourth scenario
Penerapan Metode Extreme Programming pada Rancang Bangun Sistem Analisis Sentimen Portal Berita Premana Putra, I Gede Bagus; Sudarma, Made; Manuaba, Ida Bagus Gede
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 6: Desember 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023106904

Abstract

Berita dalam bentuk portal online di era globalisasi menjadi suatu wadah yang dapat digunakan oleh setiap individu untuk menyampaikan informasi tentang seorang individu ataupun organisasi, yang didalamnya terdapat penyampaian nilai emosional pribadi, baik itu bersifat negatif, netral, ataupun positif (atau lebih dikenal dengan sentimen). Keberadaan berita tersebut menciptakan suatu peluang untuk pengembangan sistem analisis sentimen terdapat informasi yang telah disampaikan dalam portal berita. Sistem analisis sentimen tersebut dapat dikembangan dengan dengan berbagai teknik dan layanan, salah satunya adalah dengan mengintegrasikan antara sistem dan layanan Google NLP, yang telah memiliki service untuk menentukan score sentimen dari setiap kalimat yang diberikan, serta penerapan teknik web scrapping sebagai metode untuk pengambilan data. Sistem dikembangan dengan framework Laravel dengan metode pengembangan Extreme Programming yang mendukung pengembangan sistem dalam waktu singkat. Pemilihan website sebagai base sistem dengan tujuan agar sistem bisa diakses dari berbagai device baik itu mobile maupun desktop. Keberadaan sistem analisis sentimen bisa dijadikan sebagai alternatif solusi bagi individu dan organisasi untuk melakukan analisis sentimen, sehingga mampu membantu dalam proses pengambilan keputusan maupun evaluasi kinerja.   Abstract News of online portals in the era of globalization has become a forum can be used by every individual to convey information about individual or organization, in which there’s the delivery of personal emotional value, negative, neutral or positive (or better known as sentiment). The existence of news creates an opportunity for development of a sentiment analysis system based on information that has been submitted in the news portal. The sentiment analysis system can be developed using various techniques and services, one of which’s by integrating the Google NLP system and service, which already has a service to determine the sentiment score of each given sentence, as well as the application of a web scrapping techniques as a method for data collection. The system was developed using the Laravel framework with the Extreme Programming development method which supports system development in short time. Selection of the website as the base system with aim that can be accessed from various devices, both mobile and desktop. The existence of a sentiment analysis system can be used as an alternative solution for individuals and organizations to carry out sentiment analysis, so that it can assist in the decision-making a process and performance evaluation.
Sistem Deteksi Dini Penyakit Preeklampsia Melalui Perubahan Warna Urine Berdasarkan Protein dengan Menggunakan Metode Naïve Bayes Classifier Allaam, Fakhrul; Prasetio, Barlian Henryranu; Maulana, Rizal
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 4: Agustus 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2024106908

Abstract

Umumnya preeklamsia adalah penyakit komplikasi yang sering dialami pada ibu hamil.Penyakit ini terjadi dikarenakan adanya tekanan darah tinggi, tanpa edema atau bengkak dan disertai protein dalam urin (proteinuria).Kondisi ini kebanyakan dapat terjadi pada usia kehamilan timester 2 dan trimester 3 atau lebih dari 20 minggu. Ada beberapa teknik untuk mengetahui penyakit tersebut,salah satunya dengan dengan melihat kondisi urin. Namun, ketika penentuan status urin secara manual, sering mengalami kesalahan, karena proses diagnosis hanya menggunakan kasat mata sebagai indikator utama. Oleh karena itu, sistem diagnosa otomatis diperlukan untuk mengurangi kesalahan manusia dan memastikan bahwa pasien menerima perawatan yang mereka butuhkan. Informasi fitur warna diperoleh menggunakan sensor TCS 34725 untuk eksperimen ini. Ada tiga keadaan urin berbeda yang diidentifikasi dan diberi label sebagai Urine Normal, Urine Preeklampsia 1, dan Urine Preeklampsia 2. Titik referensi ditemukan sebagai Urine Normal. Proses klasifikasi menggunakan metode Naive Bayes yang merupakan salah bidang ilmu pengetahuan pola.Metode ini digunakan karena memberikan kemudahan implementasi dan komputasi yang cepat agar prediksi real-time dapat dilakukan.AbstractGenerally, preeclampsia is a complication disease that is often experienced by pregnant women. This disease occurs due to high blood pressure, without edema or swelling and accompanied by protein in the urine (proteinuria). This condition can usually occur in the 2nd and 3rd trimester of pregnancy or later 20 weeks. There are several ways to find out the disease, one of which is by looking at the condition of the urine. However, in the process of determining the condition of the urine manually, errors often occur because the analysis process only uses the naked eye as the main parameter. Therefore, a tool that can perform automatic analysis is needed to minimize errors in the process and take action on patients. This study uses a TCS 34725 sensor to perform feature extraction in the form of color. Urine conditions are divided into three classes, namely Normal Urine, Preeclampsia 1 Urine and Preeclampsia Urine 2. The classification process uses the Naive Bayes method which is one of the fields of pattern science. This method is used because it provides easy implementation and fast computation so that real-time predictions can be made.
Sistem Kontrol Perangkat Inframerah Menggunakan Speech Recognition dengan Spectrogram dan Convolutional Neural Network Berbasis Mikrokontroler Nurrizqy, Irfan Muzakky; Prasetio, Barlian Henryranu; Mardi Putri, Rekyan Regasari
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 5: Oktober 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023106909

Abstract

Menurut data dari Biro Pusat Statistik (BPS), terdapat sebanyak 22,5 juta dari penduduk Indonesia merupakan penyandang disabilitas. Angka ini berjumlah sekitar lima persen dari keseluruhan penduduk Indonesia. Di zaman sekarang, kemajuan teknologi di seluruh dunia berkembang dengan pesat, sehingga muncul banyak hal yang dapat membantu menyederhanakan kehidupan semua orang, terutama penyandang disabilitas. Salah satu hal yang membantu penyandang disabilitas adalah munculnya perangkat pintar yang dapat dikendalikan menggunakan indra selain tangan, seperti suara. Penelitian ini bertujuan untuk mengembangkan sistem yang dapat mengendalikan perangkat inframerah dengan menggunakan suara sebagai input. Sistem tersebut akan dikembangkan menggunakan mikrokontroler dan metode speech recognition yang terdiri dari spectrogram dan CNN. Penelitian ini direncanakan untuk tujuan untuk membantu penyandang disabilitas dalam mengendalikan perangkat-perangkat di sekitar rumah. Hasil pengujian menunjukkan bahwa akurasi model CNN sebesar 93% dan akurasi percobaan terhadap pengguna sebesar 74,25%. Sistem ini juga dapat menjalankan proses speech recognition dengan waktu rata-rata 0,105 detik. Jarak optimal yang diperlukan antara pengguna dengan mikrofon adalah 30 cm dan jarak optimal yang diperlukan antara transmitter inframerah dengan perangkat yang dikendalikan adalah 30 cm.   Abstract  According to data from the Central Bureau of Statistics (BPS), around 22.5 million of Indonesia's population are people with disabilities. This number amounts to about five percent of Indonesia's total population. In the present day, where technology advances are rapidly developing all around the world, there have been many things that can help simplify the lives of everyone in the world, especially people with disabilities. One thing that helps people with disabilities is the emergence of smart devices that do not need to be controlled using hands but can use other senses such as sound. This research aims to develop a system that can control infrared devices using sound as input. The system will be developed using microcontrollers and speech recognition methods consisting of spectrogram and CNN. This research is conducted with the goal of helping people with disabilities in controlling devices around the house. Testing results show that the accuracy of the CNN model is 93% and the accuracy of trials on users is 74.25%. The system can also run the speech recognition process with an average time of 0.105 seconds. The optimal distance required between the user and microphone is 30 cm and the optimal distance required between the infrared transmitter and the controlled device is 30 cm.
Sistem Pendeteksi Sleep-Disordered Breathing Berdasarkan High dan Low Frequency Menggunakan Metode Naïve Bayes Ghifari, Achmad; Widasari, Edita Rosana
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 4: Agustus 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2024106913

Abstract

Tidur merupakan aktivitas dimana otak memberikan tubuh waktu istirahat secara total. Kualitas tidur penting untuk menjaga kondisi fisik maupun mental seseorang. Buruknya kualitas tidur disebabkan oleh gangguan tidur. Gangguan tidur yang paling umum terjadi adalah Sleep-disordered Breathing (SDB) atau Sleep Apnea, dimana penderitanya akan mengalami henti napas secara berulang saat tertidur. Sleep Apnea dikategorikan menjadi 2, yaitu Obstructive Sleep Apnea (OSA) dan Central Sleep Apnea (CSA). Diagnosis gangguan tidur dilakukan dengan Polysomnography yang cenderung mahal dan kurang nyaman. Hasil Polysomnography juga tidak dapat langsung digunakan oleh dokter untuk evaluasi lebih lanjut. Oleh karena itu, pada penelitian ini dibuat sistem pendeteksi gangguan tidur ke dalam kelas Normal, OSA, atau CSA menggunakan sinyal Electrocardiography (ECG) yang diakuisisi dengan teknik 3-lead placement. Sistem ini menggunakan sensor AD8232 dalam mengakuisisi sinyal jantung yang akan diproses oleh Arduino Mega 2560 untuk mendapatkan fitur High dan Low Frequency dari sinyal yang kemudian digunakan untuk klasifikasi. Sistem ini memiliki akurasi sebesar 85% dalam melakukan klasifikasi SDB menggunakan metode Naïve Bayes dengan rata-rata waktu komputasi sebesar 12ms. Sistem ini dapat digunakan di rumah karena bersifat portable dan datanya dapat langsung diunduh melalui websiteuntuk evaluasi dokter, sehingga membuat pasien merasa lebih nyaman dan efisien dalam melakukan diagnosis dini. Abstract Sleep is an activity in which the brain gives the body total rest. The quality of sleep is important to maintain someone's physical and mental condition. Poor sleep quality is caused by sleep disorders. The most common sleep disorder is Sleep-Disordered Breathing (SDB) or Sleep Apnea, in which the sufferer will experience repeated pauses in breathing while asleep. Sleep Apnea is categorized into two, namely Obstructive Sleep Apnea (OSA) and Central Sleep Apnea (CSA). Sleep disorder diagnosis is done with Polysomnography which is expensive and uncomfortable. The result of Polysomnography can also not be directly used by doctors for further evaluation. Therefore, in this research, a system was created to detect sleep disorders into Normal, OSA, or CSA classes using Electrocardiography (ECG) signals acquired by the 3-lead placement technique. This system uses AD8232 sensors to acquire heart signals that are processed by Arduino Mega 2560 to obtain High and Low-frequency features of the signal, which are then used for classification. This system has an accuracy of 85% in classifying SDB using the Naive Bayes method with an average computation time of 12ms. This system can be used at home because it is portable and the data can be directly downloaded from the website for doctor evaluation, making the patient feel more comfortable and efficient in early diagnosis.

Page 95 of 129 | Total Record : 1288


Filter by Year

2014 2025


Filter By Issues
All Issue Vol 12 No 6: Desember 2025 Vol 12 No 5: Oktober 2025 Vol 12 No 4: Agustus 2025 Vol 12 No 3: Juni 2025 Vol 12 No 2: April 2025 Vol 12 No 1: Februari 2025 Vol 11 No 6: Desember 2024 Vol 11 No 5: Oktober 2024 Vol 11 No 4: Agustus 2024 Vol 11 No 3: Juni 2024 Vol 11 No 2: April 2024 Vol 11 No 1: Februari 2024 Vol 10 No 6: Desember 2023 Vol 10 No 5: Oktober 2023 Vol 10 No 4: Agustus 2023 Vol 10 No 3: Juni 2023 Vol 10 No 2: April 2023 Vol 10 No 1: Februari 2023 Vol 9 No 7: Spesial Issue Seminar Nasional Teknologi dan Rekayasa Informasi (SENTRIN) 2022 Vol 9 No 6: Desember 2022 Vol 9 No 5: Oktober 2022 Vol 9 No 4: Agustus 2022 Vol 9 No 3: Juni 2022 Vol 9 No 2: April 2022 Vol 9 No 1: Februari 2022 Vol 8 No 6: Desember 2021 Vol 8 No 5: Oktober 2021 Vol 8 No 4: Agustus 2021 Vol 8 No 3: Juni 2021 Vol 8 No 2: April 2021 Vol 8 No 1: Februari 2021 Vol 7 No 6: Desember 2020 Vol 7 No 5: Oktober 2020 Vol 7 No 4: Agustus 2020 Vol 7 No 3: Juni 2020 Vol 7 No 2: April 2020 Vol 7 No 1: Februari 2020 Vol 6 No 6: Desember 2019 Vol 6 No 5: Oktober 2019 Vol 6 No 4: Agustus 2019 Vol 6 No 3: Juni 2019 Vol 6 No 2: April 2019 Vol 6 No 1: Februari 2019 Vol 5 No 6: Desember 2018 Vol 5 No 5: Oktober 2018 Vol 5 No 4: Agustus 2018 Vol 5 No 3: Juni 2018 Vol 5 No 2: April 2018 Vol 5 No 1: Februari 2018 Vol 4 No 4: Desember 2017 Vol 4 No 3: September 2017 Vol 4 No 2: Juni 2017 Vol 4 No 1: Maret 2017 Vol 3 No 4: Desember 2016 Vol 3 No 3: September 2016 Vol 3 No 2: Juni 2016 Vol 3 No 1: Maret 2016 Vol 2 No 2: Oktober 2015 Vol 2, No 2 (2015) Vol 2, No 1 (2015) Vol 2 No 1: April 2015 Vol 1, No 2 (2014) Vol 1 No 2: Oktober 2014 Vol 1, No 1 (2014) Vol 1 No 1: April 2014 More Issue