cover
Contact Name
Masruri
Contact Email
masruri@ub.ac.id
Phone
+62341-575838
Journal Mail Official
jpacr@ub.ac.id
Editorial Address
Departemen Kimia, Fakultas MIPA, Universitas Brawijaya, Jl. Veteran 65145 Malang
Location
Kota malang,
Jawa timur
INDONESIA
The Journal of Pure and Applied Chemistry Research
Published by Universitas Brawijaya
ISSN : 23024690     EISSN : 25410733     DOI : http://dx.doi.org/10.21776/ub.jpacr
The Journal of Pure and Applied Chemistry Research focuses in publishing research articles in the field of Chemistry and Applied Chemistry. The target is in exploring, investigating, and developing chemicals sources from local and/or Indonesian to increase the value. Scope of the journal is organic chemistry, analytical chemistry, inorganic chemistry, biochemistry, and physical chemistry. Included the topic also organic chemistry natural product, theoretical and computational chemistry.
Articles 307 Documents
Implementation of Amino Acid as a Natural Feedstock in Production of N-Acylamides as a Biocompatible Surfactants: A Review on Synthesis, Behavioral, Application and Scale-up Process Widharta Surya Alam; Sabila Gitamara; Riki Wartakusumah; Muhammad Irfan Nurdin; Zuhrina Masyithah
The Journal of Pure and Applied Chemistry Research Vol 11, No 1 (2022): Edition January-April 2022
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2022.011.01.616

Abstract

The use of surfactants is extremely widespread for human life. The development of the use of surfactants has not reached detergents anymore, but for drug delivery, biolubricant, emulsifier, cosmetics, enhanced oil recovery (EOR), dispersants and even virus vectors. Unfortunately, the past history of surfactants had given a bad impression since many surfactants are difficult to decompose in nature, are toxic and are not suitable as biological materials. This article will examine the research development and production, syntesis pathway, classification, behaviour and application of N-Acyl amino acid (NAAAc) surfactants. Amino acid based N-Acylamides (AAc) or NAAAc surfactants are next-generation biological surfactants. NAAAc can be synthesized by chemical and enzymatic pathway. NAAAc can also be combined with ionic liquids (ILs) to become green surfactants NAAAc ILs which is low in toxicity unlike conventional ILs. The conclusion of this article studied was NAAc production process that had the highest efficiency so far was the production through a catalytic chemical reaction, namely the fatty acid amidation or amino acid acylation process. The application of AAc-based N-Acylamides is so promising that it can be considered for scale-up processes in the future.
The Effect of Klika Ongkea Extract (Mezzetia parviflora Becc.) on Pancreatic β-Cells Regeneration by Streptozotocin-Induced in Wistar Rats Jangga - Jangga; Mansur - Mansur; Saparuddin - Latu
The Journal of Pure and Applied Chemistry Research Vol 11, No 1 (2022): Edition January-April 2022
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2022.011.01.618

Abstract

This study aimed to determine the effect of Klika ongkea (Mezzetia parviflora Becc.) extract on the regeneration of pancreatic β-cells on Wistar rats that were induced using streptozotocin. Streptozotocin (STZ) with a 40 mg/kg BW dose was used in this study. Eighty adult male Wistar rats were used for this study. The animals were divided into four groups, Group I, as a healthy controls; Group II as an STZ-induced, Group III, STZ-induced and treated with galvus (Vildagliptin) 0.9 mg/200 g BW; Group IV, STZ-induced and treated with Klika ongkea 100 mg/kg BW. This study was conducted for 28 days. Four animals each group on the 1st, 7th, 14th, 21st and 28th days were observed to analyze the number of pancreatic β-cells. On the last day, pancreases were isolated and stained with hematoxylin & eosin (H&E) to analyze the regeneration of pancreatic β-cells. The data analysis was performed using an Independent-Sample T-Test to compare the number of pancreatic β-cells. The results showed that the administration of Klika ongkea extracts affected the pancreatic β-cells regeneration. These findings suggest that Klika ongkea has an effect on the regeneration of pancreatic β-cells in streptozotocin-induced rats.
Synthesis and Characterization of Complex Compounds from Cadmium(II) Chloride and Cobalt(II) Chloride with N,N'-Diethylthiourea Reza Mega Wahyuni; Husni Wahyu Wijaya; Meyga Evi Ferama Sari; I Wayan Dasna; Nani Farida
The Journal of Pure and Applied Chemistry Research Vol 11, No 1 (2022): Edition January-April 2022
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2022.011.01.640

Abstract

The synthesis of ionic complexes of cadmium(II) chloride and cobalt(II) chloride with N,N'-diethylthiourea (detu) ligands has not been previously reported. Therefore, in this research, the synthesis was carried out to study the structure and characterization of the two ionic complex compounds. The cadmium(II)-detu ionic complex was synthesized using the direct reaction method with a ratio between Cd(II) salt and detu ligand of 1:2. Meanwhile, the cobalt(II)-detu ionic complex was synthesized with a ratio between Co(II) salt and detu ligand of 2:4. The cadmium(II)-detu and cobalt(II)-detu ionic complexes have melting points of 105-108 ˚C and 122-125 ˚C, respectively. The electrical conductivity of the cadmium(II)-detu and cobalt(II)-detu complexes showed that the complexes were ionic. The FTIR analysis showed the shifting of the C=S functional group’s band to the smaller wavenumber, which indicates the coordinating detu ligand to the cadmium(II) and cobalt(II) through the S atom. The indirect evidence from 1H-NMR showed that CH3 and CH2 only slightly shifted between the free detu ligand and the Cd-detu and Co-detu complexes.
Determination of the radical-scavenging activities and identification of anthocyanins from Hexalobus monopetalus ripe fruits Arrounan Noba; Adama Hema; Elie Kabré; Bazoin Sylvain Raoul Bazié; Paulin Ouôba; Constantin M. Dabiré; Remy K. Bationo; Moumouni Koala; Eloi Palé; Mouhoussine Nacro
The Journal of Pure and Applied Chemistry Research Vol 11, No 1 (2022): Edition January-April 2022
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2022.011.01.608

Abstract

A wild fruit from classified forest of Dindéresso was analyzed for total phenolics, flavonoids, anthocyanins compounds using the Folin-Ciocalteu reagent, spectrophotometric method of Zhishen and colleagues and by the differential pH method respectively. Free radical-scavenging activities of studied fruits extracts were estimated using diammonium 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) salt method. Three major anthocyanins were identified using high performance liquid chromatography coupled with spray ionization interface mass spectrometry. Three identified anthocyanins in fruit were reported to be cyanidin 3-O-(p-coumaroyl) glucoside, pelargonidin 3-O-glucoside and pelargonidin 3-O-rutinoside. In addition, H. monopetalus fruit contained of about 1165±3.1 mg of GAE per 100 g of fresh fruit, 4490±20.2 mg of QE per 100 g of fresh fruit, and 36±0.17 mg of cyanidin 3-O-glucoside equivalents per 100 g of fresh fruit. Total anthocyanin extract had an EC50 = 4.24 mg per mL and a TEC50 time of 21 minutes (intermediate reaction). This free radical-scavenging activity was very low compared to those of the references used (0.024 and 0.034 mg/mL respectively for ascorbic acid and Trolox). The low antiradical activity and reactivity of the H. mucronata extract could be explained by several factors. In any case, fruits of this species were potential sources of natural bioactive substances having beneficial effects on the health of consumers.
Acid Isolation Techniques for Silica isolation from Rice Husk and Determination of Its Physicochemical Properties Siti Mutrofin; Leo Krisna; Diah Mardiana; Rachmat Triandi T
The Journal of Pure and Applied Chemistry Research Vol 11, No 1 (2022): Edition January-April 2022
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2022.011.01.641

Abstract

Previous research showed that rice husk has a high silica content so it becomes an alternative for processing rice waste. The acid leaching method is a technique to isolate silica by adding an acid solution. The research aim is to obtain the optimum silica yield and determine the chemical ash content of rice husks (rice IR-64,). Rice husks were first calcined at two various temperatures and times. The average yields obtained were 19.54% (500oC / 1 hr), 18.42% (500oC / 2 hrs), 25.03% (700oC /1 hr), and 22.4% (700oC/2 hrs). The physical appearance of ash was grains and white (700 oC/1hr), that were rinsed with 1 M HCl solution to remove impurities. Added 1 M NaOH was to form sodium silicate. The last step was to isolate silica using different concentrations of HCl and HNO3 (3 M, 2 M, and 1 M). The highest result was 99.87% of silica under HNO3 1 M solution. An infrared study supports that the isolated product was silica, with the presence of prominent peaks at 1102 cm-1 (stretching Si-O) and 471 cm-1 (bending Si-O). A unique peak at 958 cm-1 for Si-O-Ca present at the isolated silica using HCl 3 M, gives information on inosilicate type structure. X-ray diffraction analysis with QualX application showed that silica had cristobalite and wollastonite peaks, and the value of crystallinity index was about 63.91%.
Study of Hydrogen Sulfide Adsorption on Silica Gel with Triethanolamine layer I Wayan Adi Suarya; Rachmat Triandi Tjahjanto; Ulfa Andayani
The Journal of Pure and Applied Chemistry Research Vol 11, No 1 (2022): Edition January-April 2022
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2022.011.01.653

Abstract

Hydrogen sulfide (H2S) is an impurity in gaseous fuels, therefore this gas removal method is interesting topic. Physisorption method is considered to a simple work to be applied on a small scale. The principle of physisorption is the combination of a substrate and a physical solvent to capture H2S gas. This research studies the impact of the addition of liquid triethanolamine on the porous silica on the adsorption capacity of H2S gas. The silica substrate is synthesized using two pore templates namely a mixture of polyethylene glycol (PEG)/ sodium dodecyl sulphate (SDS) and the other one is pure chitosan. Silica surface was coated with triethanolamine (TEA) using impregnation method. H2S gas adsorption study was conducted on the synthesized silica with and without TEA. The results of this study show that TEA layer on the silica surface increases the adsorption capacity towards H2S gas, but it is relatively small compared to similar studies. The best result of combining TEA and silica gel is shown by TEA- sil-PS which was 3.8 x 10-5 mol H2S per gram of adsorbent. The calculated surface area of the sil-PS is 6.64 m2/g or 98.6% reduction from the initial value 451.4 m2/g. The increase in adsorption capacity despite a very large decrease in surface area indicates the effectiveness of TEA in absorbing hydrogen sulfide.
Silver Nanoparticles Biosynthesis Using Mangosteen (Garcinia Mangostana L.) Rind Extract For Environmentally Friendly Liquid Disinfectant Active Ingredients Abdul Haris Haris Watoni; La Ode Ahmad Nur Ramadhan; Muhammad Daffa Rahmatullah; Angelina Ike Dwiyanti Kalpen Bunga; Supardi Supardi
The Journal of Pure and Applied Chemistry Research Vol 11, No 1 (2022): Edition January-April 2022
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2022.011.01.654

Abstract

Disinfectant is one of the materials that can be used to inhibit the growth of pathogenic microorganisms, but most of the disinfectants used in the community are disinfectants made from synthetic chemicals that are harmful to the environment. The purpose of this study was to synthesize and evaluate the antimicrobial activity of silver (Ag) nanoparticles- mangosteen rind extract as an active ingredient in an environmentally friendly disinfectant formula. The synthesis process of silver nanoparticles was carried out by adding a bioreductant of mangosteen rind extract into a 0.01 M AgNO3 solution precursor with a variation of the precursor:bioreductor volume ratio of 1:1, 1:2, 1:3, 1:4, 1:5, and 1: 6. The results of the analysis with UV-Vis spectroscopy showed that the silver nanoparticles of mangosteen rind extract had good stability. The decrease in the absorption peak in the FTIR spectrum at a wave number of 3390.86 cm-1 indicates the contribution of the –OH group in the bioreductant compound in the reduction process of silver nanoparticles. PSA analysis and digital microscopy showed that the diameter of the synthesized silver nanoparticles with a volume ratio of bioreductor: precursor 1:1 and 1:2 were 82.33 nm and 356.2 nm, respectively. The antimicrobial activity test showed that the active ingredient mixture of silver-mangosteen rind extract with a composition of 1:1 had the best activity in inhibiting the growth of gram-positive Staphylococcus aureus and gram-negative Eschericia coli bacteria. The results of this study indicate that silver nanoparticles extracted from mangosteen rind are good active ingredients for environmentally friendly liquid disinfectants.
Comparison of Wet and Dry Digestions in the Analysis of Fe in Spinach by Atomic Absorption Spectrophotometry Irdhawati Irdhawati; I Gusti Ayu Putu Yunita Riyastini; Manuntun Manurung
The Journal of Pure and Applied Chemistry Research Vol 11, No 1 (2022): Edition January-April 2022
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2022.011.01.607

Abstract

The method of digestion as a part of sample preparation is very important to determine the accuracy of the analysis result. In this study, the methods of wet and dry digestions were applied to determine of Fe content in several kinds of spinach obtained from the traditional market in Denpasar Bali. This research aimed to compare the result of Fe analysis by AAS method using both of digestion methods. This research was divided into several steps starting from sampling, determination of the samples species, sample preparation, digestion by wet digestion using aqua regia and dry digestion in the furnace, and Fe analysis by AAS. The result showed that the concentrations of Fe in root spinach, red spinach, cut spinach, and tricolor spinach through wet digestion method varied between 68.08–105.45 mg/kg, while the concentrations of Fe by dry digestion obtained between 27.52–42.03 mg/kg, which was over the accepted value. Based on the one-way ANOVA statistical test with a significance level of 5%, there was a significant differences of Fe concentration in spinaches by wet and dry digestions.
Novel Antimalarial Drug Screening Based on Methyl Eugenol, Cinnamaldehyde, and Thiosemicarbazone with Cysteine Protease Inhibition: In Silico Molecular Docking, Molecular Dynamics, and ADMET Studies Lucy Arianie; Feri Eko Hermanto; Elvina Dhiaul Iftitah; Warsito Warsito; Widodo Widodo
The Journal of Pure and Applied Chemistry Research Vol 11, No 2 (2022): Edition May-August 2022
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2022.011.02.652

Abstract

Plasmodium falciparum malaria contributes to significant global diseases. Computer-aided drug design, screening, and discovery were used to analyze a novel series of Methyl Eugenol Benzaldehyde Thiosemicarbazone (MEBThi) and Methyl Eugenol Cinnamaldehyde Thiosemicarbazone (MECThi) derivatives for malaria falciparum inhibition. This present study showed that 16 molecules from 28 of MEBThi and MECThi have affinities and interaction with active-site residues of cysteine protease, a key player in erythrocyte proliferation of P. falciparum. 13-MECThi demonstrates the best binding affinity at ˗8.0 kcal/mol while co-drug ˗5.6 kcal/mol. Physicochemical and pharmacokinetic assays of 13- MECThi have also revealed this potent compound. Toxicity analysis shows that 13-MECThi does not have mutagenicity and carcinogenicity characters, whereas co-drug has mutagenicity probability. The molecular dynamic evaluation illustrated that the 13-MECThi complex has higher Root Mean Square Deviation (RMSD) values, indicating its structure was more flexible than the chloroquine complex. Root Mean Square Fluctuation (RMSF) complex of receptor and 13-MECThi has no fundamental differences with chloroquine complex. This designed compound should be considered a falciparum antimalarial drug.
Study of Xylose as Product Inhibitor in Xylanase from Aspergillus niger, Basillus subtilis, and Tricodherma reesei: Insilico and Experimental Review Approach Sigit Hadiantoro; Dyah Ratna Wulan; Amiruz Zahidin; Yanty Maryanty
The Journal of Pure and Applied Chemistry Research Vol 11, No 2 (2022): Edition May-August 2022
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2022.011.02.639

Abstract

Bioinformatics is useful for solving molecular biology problems computationally. This computational chemistry has the advantage of being safe, free from chemical waste, secure, cost-effective, and can shorten research time. The issues that arise can be in the form of basic things such as solving enzyme mechanisms, protein metabolism, or identifying microbes. Degradation of the xylanase enzyme using some microorganisms. They are Aspergillus niger, Bacillus subtilis, and Thricodherma reesei on lignocellulose bonds. Lignocellulose consists of lignin, cellulose, and hemicellulose. Cellulose and hemicellulose can have used to produce new products such as bio-based products. To predict the optimum conditions for this enzymatic reaction has used bioinformatics applications has used through substrate enzymes obtained from protein data banks. The purpose of this study was to determine the optimum conditions for obtaining xylanase enzymes from the microorganisms Aspergillus niger, Bacillus subtilis, and Thricodherma reesei by bioinformatics (in silico). This research was conducted in bioinformatics using a database from the RCSB Protein Data Bank and PubChem. The programs used to see the interaction between substrate enzymes in this study are PyMol, PyRx, and LigPlot. The best conditions based on the results of bioinformatics simulations will form the basis for producing xylanases on a laboratory scale. In this study, the results of interaction data between Bacillus subtilis and D-xylose, which have a binding affinity value of -5.2 kcal/mol.  Aspergillus niger with D-xylose, which has a binding affinity value of -5.1 kcal/mol, Tricodherma reesei with D-xylose, which has binding affinity value -4.3 kcal/mol.

Filter by Year

2012 2025


Filter By Issues
All Issue Vol. 14 No. 3 (2025): Edition September-December 2025 Vol. 14 No. 2 (2025): Edition May-August 2025 Vol. 14 No. 1 (2025): Edition January-April 2025 Vol. 13 No. 3 (2024): Edition September-December 2024 Vol. 13 No. 2 (2024): Edition May-August 2024 Vol. 13 No. 1 (2024): Edition January-April 2024 Vol. 12 No. 3 (2023): September-December 2023 Vol 12, No 2 (2023): May-August 2023 Vol 12, No 1 (2023): Edition January-April 2023 Vol 11, No 3 (2022): Edition September-December 2022 Vol 11, No 2 (2022): Edition May-August 2022 Vol. 11 No. 2 (2022): Edition May-August 2022 Vol 11, No 1 (2022): Edition January-April 2022 Vol 10, No 3 (2021): Edition September-December 2021 Vol 10, No 2 (2021): Edition May-August 2021 Vol 10, No 1 (2021): Edition January-April 2021 Vol 9, No 3 (2020): Edition September-December 2020 Vol 9, No 2 (2020): Edition May-August 2020 Vol 9, No 1 (2020): Edition January-April 2020 Vol 8, No 3 (2019): Edition September-December 2019 Vol 8, No 2 (2019): Edition May-August 2019 Vol 8, No 1 (2019): Edition January-April 2019 Vol 7, No 3 (2018): Edition September-December 2018 Vol 7, No 2 (2018): Edition May-August 2018 Vol. 7 No. 2 (2018): Edition May-August 2018 Vol 7, No 1 (2018): Edition January-April 2018 Vol 6, No 3 (2017): Edition of September - December 2017 Vol. 6 No. 2 (2017): Edition of May-August 2017 Vol 6, No 2 (2017): Edition of May-August 2017 Vol 6, No 1 (2017): Edition of January - April 2017 Vol 5, No 3 (2016) Vol 5, No 2 (2016) Vol 5, No 1 (2016) Vol 4, No 3 (2015) Vol 4, No 2 (2015) Vol 4, No 1 (2015) Vol. 3 No. 3 (2014) Vol. 3 No. 2 (2014) Vol 3, No 2 (2014) Vol 3, No 1 (2014) Vol 2, No 3 (2013) Vol 2, No 2 (2013) Vol 2, No 2 (2013) Vol 2, No 1 (2013) Vol 1, No 1 (2012) Vol 1, No 1 (2012) More Issue