cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Biotechnology
ISSN : 08538654     EISSN : 20892241     DOI : -
Core Subject : Science,
The Indonesian Journal of Biotechnology (IJBiotech) is an open access, peer-reviewed, multidisciplinary journal dedicated to the publication of novel research in all aspects of biotechnology, with particular attention paid to the exploration and development of natural products derived from tropical—and especially Indonesian—biodiversity. IJBiotech is published biannually and accepts original research articles featuring well-designed studies with clearly analyzed and logically interpreted results. A strong preference is given to research that has the potential to make significant contributions to both the field of biotechnology and society in general.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol 26, No 3 (2021)" : 6 Documents clear
Comparative lactic acid bacteria (LAB) profiles during dadih fermentation with spontaneous and back-slopping methods, as identified by terminal-restriction fragment length polymorphism (T-RFLP) Chandra Utami Wirawati; Mirnawati Bachrum Sudarwanto; Denny Widaya Lukman; Ietje Wientarsih; Eko Agus Srihanto
Indonesian Journal of Biotechnology Vol 26, No 3 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.61164

Abstract

The diversity of lactic acid bacteria (LAB) present during the manufacture of traditional fermented buffalo milk from West Sumatra, known as dadih, was studied via a culture-independent approach using terminal-restriction fragment length polymorphism (T-RFLP) to compare the dynamic diversity in back-slopping and spontaneous fermentation methods. Total LAB and pH were measured in freshly prepared buffalo milk and in \textit{dadih} fermented for 24 and 48 hours. The results indicated significant differences between the fermentation methods, with higher total LAB, and greater phylotype richness and relative abundance being identified in the back-slopping method. Terminal fragment lengths (TRFs) of 68 and 310 bp were common to both techniques, similar to those of Lactobacillus fermentum, Fructobacillus pseudoficulneus, Leuconostoc citreum, Leuconostoc kimchii, and Leuconostoc sp. The changes in phylotype number (species number) and relative abundances of LAB communities identified are expected to produce data needed to formulate the best fermentation process for dadih manufacturing. A 24-hour back-slopping fermentation method is recommended, as fermentation time of longer than 24 hours reduced viable LAB significantly. Our results also indicated that the T-RFLP technique is not only clearly sensitive enough and adequate for segregating LAB diversity in both fermentation methods, but that it also provides good information regarding the structure of microbial communities and their composition change during the fermentation process.
Biodesulfurization of the mixture of dibenzothiophene and its alkylated derivatives by Sphingomonas subarctica T7b Ida Bagus Wayan Gunam; Teruo Sone; Kozo Asano
Indonesian Journal of Biotechnology Vol 26, No 3 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.62584

Abstract

Organosulfur compounds classified as dibenzothiophenes (DBTs) and their derivatives are contained in petroleum. When used as fuel, these substances release SOx emissions, thus contributing to air pollution, acid rain, and climate change. Therefore, it is necessary to reduce the content of these organic sulfur compounds in fuels and one way to achieve this is through bacterial desulfurization. This study reports the biodesulfurization process of a mixture of DBT, 4-hexyl DBT, 4,6-dibutyl DBT, and various organosulfur compounds in light gas oil (LGO). The experiment was conducted by treating 1 mL of aromatic organosulfur compounds with 100 mg/L in \textit{n}-tetradecane or 1 mL LGO with 5 mL mineral salts in sulfur-free medium, incubated at 27 °C for 5 days with shaking at 273 rpm. Gas chromatography analyses revealed that the growing Sphingomonas subarctica T7b cells desulfurized and converted 88.29% of DBT to 2-hydroxybiphenyl as a metabolite while a mixture of DBT and 4,6-dibutyl DBT was desulfurized at 86.40\% and 7.00%, respectively. Furthermore, the mixture of DBT, 4-hexyl DBT, and 4,6-dibutyl DBT had a desulfurization percentage of 84.40%, 41.00%, and 6.66%, respectively, after five days of incubation. The compounds were observed to desulfurize slightly better as single compounds compared to when mixed with other aromatic sulfur compounds.
Detection of species substitution in raw, cooked, and processed meats utilizing multiplex-PCR assay Muhammad Cahyadi; Nur Aini Dyah Fauzıah; Imam Tubagus Suwarto; Waraporn Boonsupthip
Indonesian Journal of Biotechnology Vol 26, No 3 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.63472

Abstract

The rise of beef consumption in Indonesia opens an opportunity for “rogue” suppliers to mix beef with other meat species that are relatively cheaper, such as pork, chicken, etc. The aim of this study was to identify pig and chicken meat in raw, cooked, and processed meat products using multiplex-PCR of mitochondrial DNA Cytochrome b gene, which is maternally inherited and widely used for forensic studies. A total of 90 samples-33 raw meats, 33 cooked meats, and 24 meatballs-were used in this study. Each sample was extracted to obtain the DNA genome and this was then amplified using multiplex-PCR. The PCR products were visualized using 2% agarose gel electrophoresis. The results showed that species contained in raw, cooked, and processed meat samples could be identified as indicated by DNA bands at 398, 274, 227, and 157 bp for pig, cattle, chicken, and goat species respectively. This study concluded that species substitution in raw, cooked, and processed meats could be detected using the Cytochrome b gene as a genetic marker through multiplex-PCR assay.
Ethanolic extract of sappan wood (Caesalpinia sappan L.) inhibits MCF-7 and MCF-7/HER2 mammospheres' formation: an in vitro and bioinformatic study Dhania Novitasari; Laeli Muntafiah; Nur Fitra Sari; Edy Meiyanto; Adam Hermawan
Indonesian Journal of Biotechnology Vol 26, No 3 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.63510

Abstract

One of the mechanisms of cancer cell resistance toward chemotherapy is through cancer stem cells (CSCs), which are characterized by excessive activation of regulator proteins such as human epidermal receptor 2 (HER2). Sappan wood (Caesalpinia sappan L.) contains brazilin and brazilein that exhibit cytotoxic effects on several cancer cell lines. We aimed to explore the potency of the ethanolic extract of sappan (EES) in CSCs through bioinformatic analyses and by using a three-dimensional (3D) breast cancer stem cells (BCSCs) for in vitro assay with two different models (i.e., BCSCs and HER2-BCSCs) in order to identify the potential therapeutic targets of genes (PTTGs). Bioinformatic analyses identified PTTGs, which were further analyzed by gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein-protein interaction (PPI) networks, and hub protein selection. Mammospheres were cultured under conditioned media. The cytotoxic effects of EES were then measured by direct counting and based on the mammosphere-forming potential (MFP). Bioinformatic analysis disclosed PIK3CA and TP53 as PTTGs in BCSCs and HER2-BCSCs, respectively. In addition, the KEGG pathway analyses also demonstrated that PTTGs could regulate the ERBB pathway. EES thus demonstrated cytotoxicity and inhibited the formation of mammospheres. Collectively, EES exhibited excellent potential for further development as an inhibitor of cancer stem cells in breast cancer.
Analyzing the biosynthetic potential of antimicrobial-producing actinobacteria originating from Indonesia Anissa Utami; Pamela Apriliana; Yudi Kusnadi; Dewi S. Zilda; Zidny Ilmiah; Puspita Lisdiyanti; Siswa Setyahadi; Agustinus R. Uria
Indonesian Journal of Biotechnology Vol 26, No 3 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.65239

Abstract

We investigated the biosynthetic potential of soil-associated actinobacteria originating from Indonesia, identified as Streptomyces luridus and as Streptomyces luteosporeus. Antimicrobial assays indicated inhibitory activity by both strains against the pathogen Pseudomonas aeruginosa, with S. luteosporeus particularly inhibiting the growth of Bacillus subtilis. PCR-amplification, cloning, and sequencing of ketosynthase (KS) domains of type I modular polyketide (PKS-I) and adenylation (AD) domains of non-ribosomal peptide synthetase (NRPS) indicated the diversity of KS and AD domains derived from both Indonesian Streptomyces. Further phylogenetic analysis showed that KS domains from the subclass cis-AT PKS can be classified as being a part of a loading module or an extension module, along with their predicted substrate specificity. The results suggest that both strains are a potential source of novel biosynthetic pathways. This genetic analysis approach can be used as a fast guide to obtain insight into natural product biosynthetic gene diversity in microorganisms.
Unfolded protein response in rice (Oryza sativa L.) varieties with different level of salt stress tolerance Galang Rizki Ramadhan; Sholeh Avivi; Bambang Sugiharto; Wahyu Indra Duwi Fanata
Indonesian Journal of Biotechnology Vol 26, No 3 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.67039

Abstract

Plants activate the unfolded protein response as part of cellular adaptation, thereby maintaining the endoplasmic reticulum homeostasis during external stresses exposure. In this study, we examined the relationship between the degree of salt tolerance and unfolded protein response-related gene expression in India salt-tolerant Pokkali and INPARI 35 varieties compared to the Indica salt-sensitive counterpart IR64 and INPARI 4 varieties.  Our result showed that the salt tolerance of Pokkali and INPARI 35 had been confirmed by their higher survival rate, higher chlorophyll content, lower electrolyte leakage, and lower H2O2 and malondialdehyde content under salt stress conditions. Furthermore, the expression of unfolded protein response genes was highest in INPARI 35, whereas IR64 and INPARI 4 exhibited low gene induction during endoplasmic reticulum stress conditions. Among the four examined varieties the salt tolerant Pokkali surprisingly showed the lowest induction of all examined unfolded protein response-related genes. These results indicated the possibility that unfolded protein response supports the rice plant for adapting to the saline environment.

Page 1 of 1 | Total Record : 6