cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Biotechnology
ISSN : 08538654     EISSN : 20892241     DOI : -
Core Subject : Science,
The Indonesian Journal of Biotechnology (IJBiotech) is an open access, peer-reviewed, multidisciplinary journal dedicated to the publication of novel research in all aspects of biotechnology, with particular attention paid to the exploration and development of natural products derived from tropical—and especially Indonesian—biodiversity. IJBiotech is published biannually and accepts original research articles featuring well-designed studies with clearly analyzed and logically interpreted results. A strong preference is given to research that has the potential to make significant contributions to both the field of biotechnology and society in general.
Arjuna Subject : -
Articles 523 Documents
The characterization of bacteriocins produced by Lactobacillus plantarum strains isolated from traditional fermented foods in Indonesia and the detection of its plantaricin-encoding genes Sogandi Sogandi; Apon Zaenal Mustopa; I Made Artika
Indonesian Journal of Biotechnology Vol 24, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (22.128 KB) | DOI: 10.22146/ijbiotech.42582

Abstract

Lactobacillus plantarum is widely found in either anaerobic plant matter or fermented foods, and it has been recognized as producing antimicrobial bacteriocins. This study aimed to characterize the antimicrobial bacteriocins of L. plantarum and detect its genes that encode plantaricins. Samples were isolated from traditional fermented foods from Indonesia. Antimicrobial activity was evaluated using the agar diffusion assay procedure. The titration method applied the maximum amounts of lactic acid at 1054 mg/mL and hydrogen peroxide at 3.85 mg/mL. Based on the results, the supernatant of the L. plantarum strains appeared to have a broad spectrum of antimicrobial activity against pathogens, which would be active at pH 2.0–12.0 and stable temperature. In addition, almost all of the L. plantarum strains contained plantaricin-encoding genes (e.g. plnA, plnF,plnJK, and plnW), which were grouped into one cluster as indicated by phylogenetic analysis. Therefore, this study discovered clear evidence of the potential of some L. plantarum strains to act as antimicrobial agents.
Diagnosis and molecular characterization of Anaplasma platys in dog patients in Yogyakarta area, Indonesia Muh. Disna Faizal; Aris Haryanto; Ida Tjahajati
Indonesian Journal of Biotechnology Vol 24, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (614.238 KB) | DOI: 10.22146/ijbiotech.42750

Abstract

Anaplasma platys is a tick-borne, Gram-negative bacterium that causes anaplasmosis, a companion vector-borne disease impacting dogs. Information on this disease remains limited in Indonesia. Its symptoms are not specific, so molecular analysis is required for a rapid and accurate diagnosis. GroEL is an essential gene commonly used for classification and species identification of many groups of bacteria, including Anaplasma spp. In this study, a molecular diagnosis of anaplasmosis based on the groEL gene sequence was conducted using PCR. In addition, the genetic diversity of Anaplasma platys in infected dogs was determined. Blood samples were collected from 51 dogs suspected of anaplasmosis from Prof. Dr. Soeparwi Animal Hospital, animal clinics, and pet shops in the Yogyakarta area, Indonesia, based on anamnesis, histories of tick infestations, and clinical symptom examinations. DNA extraction and PCR targeting the groEL gene were performed, followed by sequencing. Phylogenetic tree analysis and construction were carried out using the BLAST and MEGA programs. Positive PCR sample results (amplicon length of 624 bp) were found in 6 of 51 dogs. Samples A1 (KHJ/C2), A2 (KHJ/A2), A3 (KSK/L), A4 (KHJ/L), and A5 (KNP/M2) had close ties to Anaplasma platys (AF478129.1) from GenBank. Phylogenetic analysis showed a very high homology value (100%) and bootstrap value of 100%. It can be concluded that there was no genetic diversity in the Anaplasma platys found in infected dogs in the Yogyakarta area.
Inverse correlation of kidney interstitial cells expansion with hemoglobin level and erythropoietin expression in single and repeated kidney ischemic/reperfusion injury in mice Dian Prasetyo Wibisono; Nur Arfian; Muhammad Mansyur Romi; Wiwit Ananda Wahyu Setyaningsih; Dwi Cahyani Ratna Sari
Indonesian Journal of Biotechnology Vol 24, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (727.855 KB) | DOI: 10.22146/ijbiotech.43989

Abstract

Ischemic/reperfusion injury (IRI) causes acute kidney injury that may lead to chronic kidney disease. We investigated the correlation between kidney interstitial cells expansion, hemoglobin level, and erythropoietin expression as the chronic effects of single and repeated kidney IRI in mice. We created an IRI model using male Swiss mice by clamping the bilateral renal pedicles. Subjects were divided into four groups that contained six mice each: control/sham operation, single acute IRI, single chronic IRI, and repeated IRI. Our results showed that the single chronic and repeated IRI groups significantly increased the tubular injury score, decreased the hemoglobin level, and increased erythropoietin expression compared with the control. Lower hemoglobin levels in all of the groups compared with the control was associated with erythropoietin resistance. In single chronic and repeated kidney IRI, there were decreased creatinine levels compared with the control. The decreased creatinine levels from the single acute IRI group to the single chronic IRI group, suggesting a repair phase of IRI starting on day 7 occurred in the single chronic IRI group. A macrophage marker, CD68, and an inflammatory mediator marker, MCP-1, significantly increased in all IR groups, indicating inflammation occurred due to IRI. In conclusion, chronic and repeated kidney IRI induced interstitial cells expansion and inflammation associated with anemia.
The establishment of PCR amplification, cloning, and sequencing of bovine herpesvirus 1 (BHV-1) glycoprotein D gene isolated in Indonesia Dewi Noor Hidayati; Eko Agus Srihanto; Tri Untari; Michael Haryadi Wibowo; Koichi Akiyama; Widya Asmara
Indonesian Journal of Biotechnology Vol 24, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (14.17 KB) | DOI: 10.22146/ijbiotech.44298

Abstract

Considering the increasing incidence of infectious bovine rhinotracheitis (IBR) in Indonesia, it was necessary to conduct a more in-depth study of bovine herpesvirus-1 (BHV-1) as the causative agent of IBR disease. Previous research reports indicate that the BHV-1 subtypes found in Indonesia are subtype 1.1. Currently, IBR field case detection in Indonesia still uses the serological method (ELISA), which has the potential to give false positive results and cannot explain the virus subtype. Other detection methods, such as viral isolation, take longer and require adequate resources. This study aimed to determine the BHV-1 subtypes of Indonesian isolates using molecular techniques. Nested PCR using two pairs of primers was successfully used to amplify the glycoprotein D (gD) gene. The gD gene fragment was cloned into the pGEM-T plasmid. Analysis of the gD gene sequence was subsequently carried out to determine the BHV-1 character of the Indonesian isolates. The results indicated that the isolates were different from the previous isolates, and had similarities (100%) with subtype 1.2 strain SP1777 and SM023.
Expression and purification of recombinant coat protein of sugarcane mosaic virus from Indonesian isolate as an antigen for antibody production Natalia Tri Astuti; Nurmalasari Darsono; Suvia Widyaningrum; Widhi Dyah Sawitri; Sri Puji Astuti; Win Darmanto
Indonesian Journal of Biotechnology Vol 24, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (72.263 KB) | DOI: 10.22146/ijbiotech.45551

Abstract

Sugarcane mosaic virus (SCMV, genus Potyvirus, family Potyviridae) is a prominent pathogen of sugarcane (Saccharum sp. hybrids). It can cause losses in susceptible varieties, in crop as well as sugar production, economically. Although it has been studied in major sugar-producing countries, research on the definement of SCMV from Indonesian isolates based on molecular study has been very limited. This study aimed to obtain a proper recombinant antigens emanating from coat protein of SCMV from Indonesian isolate in order to produce polyclonal antibodies that cann be used for immunodiagnosis assays in a subsequent study. A gene-encoding coat protein of SCMV (CP-SCMV) was amplified using RT-PCR and cloned into vector pJET1.2. The cDNA was inserted into 6X His-tag expression plasmid of pET28a(+) and over-expressed in Escherichia coli BL21(DE3) to produce a recombinant protein. The highest expression was found in 0.1M IPTG induction media for 5 h at 37oC. SDS-PAGE analysis clarified that the recombinant CP-SCMV remained as an insoluble fraction. Purifications was carried out by the affinity Ni-NTA resin, followed by electroelution to obtain a highly purified protein. To meet the quality requirements of a proper antigen, the highly purified protein was concentrated. A molecular weight of the rCP-SCMV (approximately 40 kDa) was clearly observed by 10% SDS-PAGE at the concentration of 16.184 mg/mL. 
Data mining analysis of miR-638 and key genes interaction in cisplatin resistant triple-negative breast cancer Adam Hermawan; Herwandhani Putri
Indonesian Journal of Biotechnology Vol 24, No 2 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (335.426 KB) | DOI: 10.22146/ijbiotech.48732

Abstract

Cisplatn is one of the chemotherapy for the treatment of triple‐negatve breast cancer (TNBC), but its effectveness is limited because of the phenomenon of chemoresistance. miR‐638 was shown to regulate chemoresistance; however, it has never been validated in the cisplatn‐resistant tumor from patents. This present study aimed to identfy the key gene regulatory networks of miR‐638 and evaluate the potental role of the miR‐638 and its targets as potental prognosis biomarkers for cisplatn‐resistance triple‐negatve breast cancer patents. The miR‐638 target was obtained from the miRecords database while the mRNA of chemoresistance biomarker candidate was obtained from the GSE18864 of GEO database, which is mRNA of cisplatn‐resistance TNBC patents. CCND1 and FZD7 are potental candidates for cisplatn chemoresistance biomarkers in patents with TNBC. Moreover, a Kaplan‐Meier survival plot showed that breast cancer patents with low mRNA levels of FZD7 had signifcantly worse overall survival than those in higher mRNA expression group. Taken together, miR‐638 plays a role in cisplatn resistance mechanism through a mechanism involving its target gene CCND1 and FZD7. Overall, miR‐638, CCND1, and FZD7 are candidates for cisplatn biomarker resistance in TNBC.
Molecular characterization of ageratum enation virus and beta satellite associated with leaf curl disease of fenugreek in India P Swarnalatha; V Venkataravanappa; C N Lakshminarayana Reddy; M Sunil Kumar; M Krishna Reddy
Indonesian Journal of Biotechnology Vol 24, No 2 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (130.56 KB) | DOI: 10.22146/ijbiotech.49939

Abstract

Cisplatn is one of the chemotherapy for the treatment of triple‐negatve breast cancer (TNBC), but its effectveness is limited because of the phenomenon of chemoresistance. miR‐638 was shown to regulate chemoresistance; however, it has never been validated in the cisplatn‐resistant tumor from patents. This present study aimed to identfy the key gene regulatory networks of miR‐638 and evaluate the potental role of the miR‐638 and its targets as potental prognosis biomarkers for cisplatn‐resistance triple‐negatve breast cancer patents. The miR‐638 target was obtained from the miRecords database while the mRNA of chemoresistance biomarker candidate was obtained from the GSE18864 of GEO database, which is mRNA of cisplatn‐resistance TNBC patents. CCND1 and FZD7 are potental candidates for cisplatn chemoresistance biomarkers in patents with TNBC. Moreover, a Kaplan‐Meier survival plot showed that breast cancer patents with low mRNA levels of FZD7 had signifcantly worse overall survival than those in higher mRNA expression group. Taken together, miR‐638 plays a role in cisplatn resistance mechanism through a mechanism involving its target gene CCND1 and FZD7. Overall, miR‐638, CCND1, and FZD7 are candidates for cisplatn biomarker resistance in TNBC.
Analysis of ethylene biosynthesis gene expression profile during titanium dioxide (TiO2) treatment to develop a new banana postharvest technology Fenny M Dwivany; Rizkita R Esyanti; Veinardi Suendo; Aksarani ‘Sa Pratiwi; Annisa A Putri
Indonesian Journal of Biotechnology Vol 24, No 2 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (29.653 KB) | DOI: 10.22146/ijbiotech.51718

Abstract

Banana is an important crop that demands proper methods in postharvest handling. As a climacteric fruit, thebanana fruit ripening process is affected by ethylene. Several methods have been developed to extend the shelf life of a banana, such as using ethylene scrubbers. In this study, ttanium dioxide (TiO2), a photocatalyst, was used as an alternatve method to delay the fruit ripening process. The effect of TiO2 on the ripening‐related gene MaACS1 was investgated. Banana fruits were placed in a TiO2‐coated glass chamber and observed for ten days. Fruit ripening in the treated chamber was delayed for eight days compared to the control. Total RNA was extracted from control and TiO2‐treated fruit pulp and synthesized into cDNA. Reverse transcripton PCR was performed to investgate the gene expression, which showed that MaACS1 expression was relatvely lower than treated control. The fnding of these studies suggested that the TiO2 chamber has the potental to extend the shelf life of banana by delaying its ripening process and decreasing the expression of MaACS1. To the best of our knowledge, no previous study has investgated the effect of TiO2 on the expression of genes related to banana fruit ripening.
Repetitive DNA sequences accelerate molecular cytogenetic research in plants with small chromosomes Agus Budi Setiawan; Ari Wibowo; Chee How Teo; Shinji Kikuchi; Takato Koba
Indonesian Journal of Biotechnology Vol 24, No 2 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (35.598 KB) | DOI: 10.22146/ijbiotech.51726

Abstract

Repetitive DNA sequences are highly abundant in plant genomes and are favorable probes for chromosome identification in plants. However, it is difficult to conduct studies on the details of metaphase chromosome structures in plants with small chromosomes due to their highly condensed status. Therefore, identification of homologous chromosomes for karyotyping and analyzing chromosome structures is a challenging issue for cytogeneticists without specific probes and precise chromosome stages. In this study, five repetitive DNA probes, i.e., 5S and 45S ribosomal DNAs (rDNAs), melon centromeric sequence (Cmcent), cucumber subtelomeric sequence (Type I), and microsatellite (CT)10 repeats, were used to identify primary constrictions and homologous chromosomes for karyotyping. Four and two loci of 45S rDNA were respectively observed on metaphase and pachytene chromosomes of Abelia × grandiflora. Cmcent was detected on both primary constrictions of melon pachytene and metaphase chromosomes. Furthermore, one pair of 5S rDNA signals were hybridized on melon metaphase chromosomes. Eight and two loci of 45S and 5S rDNA were respectively detected on cucumber chromosomes. Type I and (CT)10 probes were specifically hybridized on subtelomeric and interstitial regions on the chromosomes, respectively. These results suggest that repetitive DNA sequences are versatile probes for chromosome identification in plants with small chromosomes, particularly for karyotyping analyses.
Cloning and in silico study of an endoglucanase from a thermophilic bacterium isolated from a hydrothermal vent of West Kawio, Sangihe‐Talaud waters, North Sulawesi, Indonesia Edvan Arifsaputra Suherman; Maelita Ramdani Moeis; Elvi Restiawaty
Indonesian Journal of Biotechnology Vol 24, No 2 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.48272

Abstract

Endoglucanase is used in industries that apply high temperatures, such as bioethanol, detergent, paper, and animal feed industries. Most available endoglucanases have very low stability at high temperatures. Therefore, this study aimed to identfy a new thermostable endoglucanase that is able to maintain its actvity at high temperatures. Five isolates of thermophilic bacteria were previously isolated from the hydrothermal vent of West Kawio, Indonesia. Among them, the DSI2 isolate showed the highest endoglucanase actvity, and was identfed and named as Bacillus safensis DSI2. The EgDSI2 gene was cloned from B. safensis DSI2. EgDSI2 is 1851 bp long encoding a protein of 616 amino acids. The encoded protein, EgDSI2, has high sequence identty to other B. safensis endoglucanases and was predicted with the Compute pI/Mw tool to be 69.41 kDa. EgDSI2 was high in hydrophobic amino acids. The enzyme had higher percentage of Ala andPro, and lower percentage of Gly compared to thermolabile endoglucanases from two Bacillus species. EgDSI2 harbored a catalytc domain belonging to glycosyl hydrolase family 9 (GH9) and a type 3 cellulose‐binding domain (CBM3). Propertes of endoglucanases with GH9‐CBM3 modular organizaton include actvity over a wide pH range, high optmum temperature, and thermostablity. Therefore, EgDSI2 has potental applicatons in the industries.

Filter by Year

2005 2025